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Signature :

iv



ABSTRACT

ENERGY EFFICIENT SCHEDULING IN FLOW-SHOP AND PARALLEL
MACHINE ROBOTIC CELLS

AYDOĞAN, ÇİYA

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Sinan Gürel

September 2021, 108 pages

Robotic cell scheduling studies mostly focus on increasing the throughput of the cell.

Therefore, those studies consider cycle time or makespan minimization objectives.

However, energy-efficient and environmentally sensitive manufacturing operations

become more important and receive attention in recent studies in the literature. In

this thesis, we study two robotic cell scheduling problems with machines and a ma-

terial handling robot. We consider robot energy consumption as an objective to mini-

mize while maximizing the throughput. The problem is to find efficient solutions for

these objectives. Two scheduling environments are studied: a two machine flow-shop

robotic cell and a two parallel machine robotic cell. In a flow-shop scheduling envi-

ronment, parts are processed on both machines, but in a parallel machine scheduling

environment, parts are processed on one of two machines. In both robotic cells, a

robot performs all handling and loading-unloading operations.

The robot consumes energy during its moves. We assume that the energy consump-

tion can be formulated as a convex nonlinear function of robot’s speed. We try to

find the optimal robot move sequence and optimal speed of the robot to minimize

energy consumption and makespan (or cycle time). We also make other scheduling
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decisions such as part sequencing and machine-part assignment. For the flow-shop

robotic cell scheduling problem we propose a mathematical model that finds efficient

solutions for energy consumption and cycle time objectives. We solve the model us-

ing mixed integer second-order conic programming (MISOCP) reformulation. For

the parallel machine robotic cell, similarly, we propose a mathematical model and

its MISOCP reformulation to find efficient solutions. We also propose alternative

neighborhood search algorithms based on Simulated Annealing. For both problems,

we test the computational performance of proposed solution approaches and present

energy saving achieved by robot speed control strategy.

Keywords: Robotic cell, Scheduling, Non-identical parts, Nonlinear optimization,

Energy consumption, Robot speed control
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ÖZ

AKIŞ TİPİ VE PARALEL MAKİNELİ ROBOTİK HÜCRELERDE ENERJİ
TASARRUFLU ÇİZELGELEME

AYDOĞAN, ÇİYA

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Gürel

Eylül 2021 , 108 sayfa

Robotik hücre çizelgeleme problemleri çoğunlukla hücrenin üretim hızını artırmaya

odaklanır. Ancak, son zamanlarda enerji tasarrruflu ve çevreye duyarlı üretim ope-

rasyonları daha önemli hale geldi ve yakın zamanda yapılan çalışmalarda daha fazla

ilgi çekmekte. Bu tezde, iki robotik hücre çizelgeleme problemi ele alındı. Bir robo-

tik hücrede makineler ve elleçleme robotu yer alır. Bu tezde robot enerji tüketimini

minimize etme hedefini üretim hızını maksimize etme hedefi ile birlikte ele aldık. Bu

problemlerde bu iki hedef için etkin çözümler bulmayı amaçladık. Önce birden fazla

parça üreten iki makineli akış tipi robot hücresi, daha sonra ise iki paralel makineli

robot hücresi ele alındı. Akış tipi çizelgelemede parçalar her iki makinede de sabit bir

sırada işlenirken paralel makineli çizelgelemede parçalar iki makineden birinde işle-

nir. Her iki robot hücresinde de tüm taşıma ve yükleme-boşaltma işlemleri bir robot

tarafından gerçekleştirir.

Robot taşıma işleri sırasında enerji tüketir. Bu çalışmada enerji tüketiminin robot hı-

zına göre dışbükey doğrusal olmayan bir fonksiyon olarak formüle edilebileceğini

varsayıyoruz. Bu tezde robot enerji tüketimini ve maksimum işbitim (ya da çevrim
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süresi) hedeflerini minimize etmek için en iyi robot hareket dizisini, robot hareket

hızlarını bulmayı amaçlıyoruz. Aynı zamanda parça sırası ve makine-parça atama ka-

rarları da veriliyor. Akış tipi robotik hücresi için, çevrim süresi ve enerji tüketimi he-

defleri için etkin çözümleri bulan bir matematiksel model önerdik. Bu modeli karışık

tamsayılı ikinci derece konik programlama problemi olarak çözdük. Paralel makineli

robotik hücre çizelgeleme problemi için, enerji tüketimi ve işbitim zamanı hedeflerini

minimize edecek çözüm yöntemleri önerdik. İlk olarak bir matematiksel model geliş-

tirdik ve konik gösterimini çözdük. Daha sonra Tavlama Benzetimi kullanan komşu-

luk arama algoritmaları önerdik. Her iki problem için önerilen çözüm yöntemlerinin

hesaplama performansını test ettik. Ayrıca robot hız kontrol yaklaşımının bu prob-

lemlerde sağladığı enerji tasarrufunu gösterdik.

Anahtar Kelimeler: Robotik hücre, Çizelgeleme, Özdeş olmayan parça, Doğrusal ol-

mayan optimizasyon, Enerji tüketimi, Robot hız kontrolü
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CHAPTER 1

INTRODUCTION

The efficiency of production systems has always been an important issue. Efficiency

of a production system can be defined as the production of goods at the lowest possi-

ble cost. Costs can include material cost, labor cost, time cost, energy cost, etc. Re-

cently, energy efficient manufacturing has been a rising topic with increasing ecolog-

ical awareness due to global warming, and rising energy prices (Bunse et al., 2011).

There is an increasing trend in energy consumption around the world (Statistical Re-

view of World Energy, 70th edition, 2021). According to U.S. Energy Information

Administration, the industry sector has the highest level of energy consumption in the

world. Therefore, energy efficiency in industry is an important research area.

With technological developments, the use of industrial robots in various industries has

increased. These industrial robots are used in loading-unloading operations, trans-

portation, warehousing, quality control, etc. In the last ten years, usage of the indus-

trial robots has increased significantly (World Robotics Report International Federa-

tion of Robotics, 2020). Engelmann (2009) estimated that the energy consumption of

industrial robots is approximately 8% of total energy consumption in the automotive

industry. In industry, cost reduction and sustainability can be achieved by reducing the

energy consumption of the robots. In addition, by doing this, damages to the environ-

ment due to energy consumption such as CO2 emission and environmental pollution

are reduced. In this thesis, we aim to find energy efficient operation schedules in two

types of manufacturing cells with a material handling robot.

Robotic cells are production environments that include a number of machines, one

or more material handling robots which are programmable. Robotic cells can have

buffers to stock materials/parts in production. In the robotic cells, material handling
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robots perform loading-unloading operations and handling operations between ma-

chines/buffers while the machines process parts. Parts produced in a cell can be iden-

tical or non-identical. Identical parts have the same processing times and operations.

Non-identical parts have different processing times from each other.

In this thesis, we consider two machine robotic cells with one material handling robot

for producing non-identical parts. We assume the cells under consideration have one

input buffer and one output buffer. The parts are in the input buffer at the beginning,

and the finished parts are stocked in the output buffer. First, we consider a flow-shop

manufacturing cell where each part is first processed on the first machine (machine

1) and then on the second machine (machine 2). Machines have different operations

on parts. Buffers and machines are located linearly as can be seen in Figure 1.1. The

robot moves between buffers/machines to provide the flow of parts from the input

buffer to the output buffer.

Figure 1.1: Flow-shop manufacturing cell layout

In the flow-shop manufacturing environment, the robot has certain move sequences

which are called cycles. We consider a cyclic scheduling problem as we need to

schedule a minimum part set for a given set of parts. There are two possible cycles

(S1 and S2). In each cycle, a part is processed on machine 2, the next part is processed

on machine 1. So, in a cycle, we process two parts. One part is finished and delivered

to the output buffer, the other part is partly finished and loaded on machine 2 at the

end of a cycle. From a scheduling perspective, two decisions have to be made. Part

sequencing and cycle type selection (S1 or S2) for each robot move position.

During a cycle, the robot does some operations like moving between machines/buffers

and loading/unloading parts on machines. While moving between two locations in

the cell, the robot moves at a certain speed and consumes energy. In this thesis,
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different than the studies which consider the same robotic cell, we assume that robot

speed is controllable. We assume that the robot’s energy consumption in a move can

be represented as a function of its speed and also depends on the distance traveled

and the technical specifications of the robot. As the speed of the robot increases,

energy consumption increases, and cycle time may decrease. Therefore, along with

the aforementioned scheduling decisions, we need to make robot speed (or move

time) decisions in this scheduling environment.

As we consider minimizing energy consumption and cycle time objectives at the same

time and these two objectives conflict, we need to find efficient solutions for the prob-

lem. To this end, we develop a mathematical model which makes part sequencing, cy-

cle type selection, and robot speed decisions to minimize energy consumption while

achieving a certain cycle time (i.e. throughput) level. We perform a computational

study on this model and present the results.

Second, we consider a two parallel machine robotic cell scheduling problem. In this

environment, the parts are processed on one of two parallel machines. But, the speed

of processing of each machine can be different, i.e. the processing time of a part on a

machine can be different than the processing time of that part on the other machine. A

layout in which the machines are located between the buffers is considered, as given

in Figure 1.2. The robot carries a part from the input buffer to one of the machines,

and then to the output buffer.

Figure 1.2: Two parallel machine manufacturing cell layout

In this problem, we again consider robot energy consumption objective. The schedul-
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ing objective to minimize is the makespan of given set of parts. The problem is to find

the robot moves, speed of the robot at these moves, part sequence, and machine-part

assignment so that both objectives are minimized. However, the two objectives are

conflicting, because while makespan can be improved by speeding up a robot, the

energy consumption objective gets worse.

For this problem, we first defined robot routes. In a route, the robot follows certain

move sequences. Then, the problem can be defined as finding a sequence of robot

routes rather than a sequence of robot moves. In each route, a part starts its process

on a machine so we use as many routes as the number of parts in the schedule. Rep-

resenting the problem using robot routes helps to develop a mathematical model and

heuristic algorithms for the problem. In order to find efficient solutions by solving the

mathematical model, we used ε-constraint approach and minimized energy consump-

tion subject to a given makespan level. For the larger instances, we designed three

neighborhood search algorithms which find efficient solutions.

1.1 Contributions of the thesis

Cycle time minimization in a two machine flow-shop robotic scheduling problem

(fixed robot speed) is already studied in the literature. There is a polynomial-time

algorithm which solves the makespan minimization problem as a special case of the

traveling salesman problem. However, when robot speed control is introduced and

energy consumption objective is considered in this problem, new solution approaches

are needed. In this thesis, we develop a mathematical model which finds efficient

solutions. The model can solve problem instances up to 20 parts. Therefore, as

we need to solve this problem for a minimum part set, we believe that the model is

sufficient for practical size problems.

For the two parallel machine robotic cell problem, to the best of our knowledge,

there are no studies that consider makespan minimization or energy consumption

objectives, separately or together. We need to make part sequencing, machine-part

assignment and robot move scheduling (sequence of moves and speed) decisions at

the same time. By introducing robot route definitions, we are able to formulate both
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makespan minimization and energy consumption problems, using off the shelf branch

and bound solvers. By using the ε-approach we find efficient solutions for the two

objectives. For solving large problem instances, we developed neighborhood search

algorithms. These algorithms can be used to minimize makespan or to find efficient

solutions for the problem.

In summary, this thesis contributes to the robotic cell scheduling literature, by intro-

ducing robot speed control strategy in flow-shop robotic cell and by studying a new

robotic cell scheduling problem with parallel machines and a material handling robot

with scheduling and energy consumption considerations.

The rest of the thesis is organized as follows. Chapter 2 reviews the studies about

flow-shop robotic cell scheduling and parallel machine scheduling with common

servers. In Chapter 3, we give problem definition, mathematical model, the analysis

of the mathematical model, and computational results for the problem on flow-shop

manufacturing robotic cell. For the parallel machine robotic cell, the problem defini-

tions, mathematical models, algorithms, their analyses, and numerical study are given

Chapter 4. We conclude the study in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this thesis, we study two different scheduling environments: a flow-shop manu-

facturing cell and a parallel machine manufacturing cell. In flow-shop scheduling,

each part is processed on each machine visiting the machines in a fixed order. In

parallel machine scheduling each part is processed on one of the parallel machines.

We assume that an input and an output buffer exists in each case. Also, we assume

a material handling robot does all handling operations (carrying, loading, unloading)

between input buffer-machines-output buffer in both cases. In Section 2.1, we present

a review of the studies on scheduling problems in robotic cells with a flow-shop en-

vironment. Then, in Section 2.2 we present the literature on robotic scheduling prob-

lems in a parallel machine environment.

2.1 Studies on Flow-Shop Robotic Cells

In this section, we present a review of the studies on robotic cell scheduling with flow-

shop production. The pioneering study in robotic cell scheduling problem is by Sethi

et al. (1992) and robotic cell scheduling problems receive the attention of researchers

since the early 1990s. Robotic cell scheduling problems can be classified according to

problem characteristics. Dawande et al. (2005) provided a classification scheme and

a literature survey. The problems can be grouped based on the number of machines

in the cell, i.e, if a cell contains m machines, then it is called m-machine robotic

cell. Also, the number of robots, robot types (i.e., single or dual gripper), and variety

of parts (i.e., identical or multiple) are used while classifying these problems. Early

studies on robotic cell scheduling problems focus on material handling robot with a
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single gripper, so only one part can be carried at a time. Later, various problems in

which the different robot and the production cell characteristics were considered. The

vast majority of the studies in the literature aim to find schedules (robot moves and

part sequences) that minimize the cycle time, which equivalently implies maximizing

the throughput of the cell.

Robotic cells can be designed to produce identical parts. As said, Sethi et al. (1992)

studied a robotic cell scheduling problem for the first time in the literature. They

introduced optimal robot cycles (a sequence of robot moves) that minimize cycle time

for 2-machine and 3-machine flow-shop robotic cells which produce identical parts.

If n parts are produced in a cycle, this cycle is called an n-unit cycle. Sethi et al.

(1992) proposed two optimal 1-unit cycles, S1 and S2, which would be described in

Chapter 3. Crama and van de Klundert (1997) showed an identical part cyclic robot

schedule that has minimum cycle time in anm-machine flow-shop robotic cell, where

m > 3.

Cyclic production schedules can also be used when multiple part types are produced.

When multiple part types exist, cyclic schedules are prepared for a minimal part set

rather than the whole part set. Given the demand for multiple part types, the minimal

part set can be found as described in the following example. If the demand quantities

are given as 50 for part A, 40 for part B, and 30 for part C, the corresponding smallest

set of parts consists of 5 parts from A, 4 parts from B, and 3 parts from C. These

part quantities are the minimum possible values that give the same proportion values

as the real demand values. So, for this example, it is sufficient to find an optimal

robotic cell schedule for n = 12. For a 2-machine robotic cell, given the robot cycle

and customer demand, Sethi et al. (1992) provide a polynomial-time algorithm that

finds the optimal part sequence for the minimal part set.

In this thesis, one of the robotic cell scheduling problems that we studied considers

a 2-machine flow-shop robotic cell with multiple part types. For such a robotic cell,

Hall et al. (1997) proposed an O(n4) algorithm that finds the optimal robot cycle and

part sequence that minimizes cycle time. Agnetis (2000) showed that part sequenc-

ing problem in a 2-machine robotic cell can be converted to the classical two ma-

chines no-wait flow-shop makespan minimization problem and it is solvable in time
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O(nlogn). Aneja and Kamoun (1999) improved the algorithm which is proposed by

Hall et al. (1997) by providing an algorithm, which has complexity O(nlogn), that

find the optimal part sequence and robot cycles based on the TSP (Travelling sales-

man problem) with a special cost structure (Gilmore and Gomory, 1964). In this

thesis, along with robot cycle and part sequencing decisions, we consider robot speed

decisions. Also, we consider the robot energy consumption minimization objective

together with the cycle time objective.

There are studies that consider robotic cells with three or more machines and multi-

ple part types. Hall et al. (1997) investigated 1-unit cycles for a given part sequence

in a 3-machine cell.For m-machine robotic cells, Sriskandarajah et al. (1998) pro-

vided a classification of part sequencing problems when the robotic cycle is given.

They stated that there are m! possible 1-unit cycles in an m-machine cell, and part

sequencing problem can be solved in polynomial time for (m − 2) of these cycles.

Using a particular state graph, Brauner and Finke (1999) studied k-unit production

cycles as special paths in m-machine robotic cells. Later, Brauner and Finke (2001)

developed a problem instance where 1-unit production cycles can be dominated by a

2-unit production cycle in 4-machine cells. Crama and de Klundert (1999) presented

1-unit cycles in 3-machine robotic flow-shop cell yield optimal production rate for

producing identical parts. Brauner (2008) examined k-unit cycles that exactly k parts

enter and leave in a cycle for producing identical parts in flow-shop robotic cells.

When the number of machines and number of part types increase, the complexity of

a robotic cell scheduling problem also increases. To solve these problems, heuris-

tic and meta-heuristic algorithms were developed in many studies. Under different

robot cycles in 3-machine cells, Kamoun et al. (1999) developed a heuristic algo-

rithm for part sequencing problems. They also proposed two heuristics to design the

layout of these cells. Hurink and Knust (2002) presented a tabu search (TS) algo-

rithm for a job-shop production environment with a single material handling robot.

Soukhal and Martineau (2005) developed an integer programming model for a flow-

shop robotic cell problem with multiple parts to minimize makespan. They proposed

a genetic algorithm (GA) for large instances. For the same problem, Carlier et al.

(2010) proposed a decomposition algorithm that considers machines’ blocking time.

They devised a method that first determines the part sequence, then the robot move
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sequence. Kamalabadi et al. (2007) solved a 3-machine robotic cell problem and

presented a swarm optimization (PSO) algorithm for large instances of the problem.

Zarandi et al. (2013) considered different loading-unloading times for each part and

sequence-dependent setup times in a 2-machine robotic cell scheduling problem. To

solve large-sized problems, they proposed a simulated annealing (SA) algorithm. For

4-machine robotic cells, Abdulkader et al. (2013) developed a genetic algorithm that

finds the part sequence to reduce robot cycle time. Gultekin et al. (2018) devel-

oped a mathematical programming formulation to determine the part sequence and

robot motion sequence for a robotic cell that produces different types of parts with m

machines. This formulation does not reduce the problem to only 1-unit cycles, as is

usually done in the literature, and deals with general n-unit cycles. In their study, they

also developed a hybrid meta-heuristic method in which GA and TS are integrated to

solve the problem.

Depending on the situation, the number and types of robots used may change. There

are studies in the literature that deal with the use of multiple robots and dual gripper

robots in the cell. Sethi et al. (2001) considered a 2-machine flow-shop with a robot

having a dual gripper for producing identical parts. They examined the advantages

of the more costly dual gripper robotic cells over single gripper robotic cells. For

given cell parameters and the number of machines, they developed a simple heuris-

tic that compares the performance of the dual gripper robot and single gripper robot.

Sriskandarajah et al. (2004) investigated 2-machine flow-shop dual gripper robotic

cells for producing multiple parts to maximize the long-run throughput rate. Even

for the given robot move sequence, they proved finding an optimal part sequence

is strongly an NP-hard problem. They proposed a heuristic approach to find robot

moves and part sequences. Alcaide et al. (2007) considered an automated production

system with several material handling robots to maximize the throughput rate by ex-

tending the single robot scheduling approaches. They presented a graph model for

solving multi-robot scheduling problems based on the critical path problem. Elmi

and Topaloglu (2013) considered multiple robots in hybrid flow-shop cells producing

multiple parts with independent parallel machines aiming to minimize the makespan.

Several papers which review robot cell scheduling studies exist in the literature. Lee et

al. (1997) review studies on machine scheduling problems published until 1997. They
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also summarize robotic cell scheduling problems in their survey. Levner et al. (2010)

reported computational complexity of fundamental cyclic scheduling problems. The

reader can refer to other surveys (Crama et al., 2000; Dawande et al., 2005; Hall and

Sriskandarajah, 1996; Levner et al., 2010) for a complete summary of the robotic cell

scheduling studies.

While the majority of studies focused on the maximization of the throughput rate, a

few studies have addressed different aspects. Gultekin et al. (2007) and Gultekin et

al. (2010) considered altering processing times on machines by changing the speeds

of the machines in 2-machine and 3-machine robotic cells for producing identical

parts. The decrease in processing time causes higher manufacturing costs so they

used a bicriteria model to find robots move sequence not only for minimizing the cycle

time but also for minimizing the manufacturing cost. Batur et al. (2012) considered

processing time controllability on CNC machines in 2-machine cells. They proposed

a model as a traveling salesman problem to find robot move sequence and processing

times of parts on each machine.

The majority of robotic cell studies assumes that the robot speed is constant and given

for all moves in a robotic cycle. Robots may be used at maximum speeds to achieve

the highest throughput rate. However, the cells would consume more energy as a re-

sult of this. Kobetski and Fabian (2008) developed several strategies for balancing the

speeds of moving parts in flexible production systems. They stated that the robot’s ac-

celeration and speed have an impact on its energy usage. The speed of robots may be

controlled to decrease energy consumption. To minimize the total energy consump-

tion in an industrial robotic cell, Bukata et al. (2017) proposed a mixed-integer linear

programming model. They considered the robot speeds, robot positions, operation

sequences, and robot’s power-saving modes in the model. They devised a heuristic

method that can solve real-sized problems with up to 12 robots because the model

is insufficient to solve problems with a large number of robots. The proposed algo-

rithms were also tested on a case study of Skoda Auto robotic cell and 20% energy

saving is achieved with power-saving modes and optimization of the robot speeds.

After this study, Bukata et al. (2019) proposed an algorithm based on the branch and

bound method for the problem studied by Bukata et al. (2017). Gürel et al. (2019)

studied robot speeds decision in a 2-machine robotic cell scheduling problem. They
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considered 2 objectives which are cycle time minimization and energy consumption

minimization for S1, S2 cycles. The energy consumption is formulated as a nonlinear

convex function of robot speed in their study. They showed the trade-off between the

two objectives and demonstrated that significant energy savings can be achieved by

eliminating robot speed control. Gultekin et al. (2021) studied m-machine robotic

cell producing identical parts considering cycle time minimization and energy con-

sumption minimization objectives at the same time. Because the energy consumption

function is nonlinear, convex and depends on the robot speeds which are decision vari-

ables, they constructed an MISOCP model and a heuristic algorithm to find Pareto

efficient solutions. Under controllable processing time and robot speed considera-

tions in a 2-machine robotic flow-shop cell producing identical parts, Güzel (2021)

proposed a mathematical model to minimize energy consumption and cycle time. ε-

constraint approach is used to the solution. As said above, in this thesis, we consider

a robotic cell scheduling problem on 2-machine robotic cells where robot cycles, part

sequencing, and robot speed control decisions are considered at the same time. To

the best of our knowledge, there are no studies that consider robot speed control and

robot energy consumption objective in a 2-machine flow-shop robotic cell with non-

identical parts.

In the next section, we give a review of the literature on scheduling problems in

parallel machine environments with servers (or material handling robots).

2.2 Studies on Parallel Machine Cells

In a parallel machine scheduling environment, a set of parts is given and each part has

to be processed by one of the machines. In some cases, loading a part on a machine

or a setup is required before processing a part. This setup is done by a server which

can be a human operator, automated guided vehicle, robot, etc. The problem we face

in these situations is called parallel machine scheduling with a common server. In

this thesis, we study a production cell where two parallel machines and a material

handling robot operates. At the beginning, the parts are ready at the input buffer.

Each part is first picked from the input buffer by the robot, then loaded on a selected

machine and processed and then unloaded and taken to the output buffer. The problem
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is to find the part sequence, i.e. in which order the parts will be picked from the input

buffer, part-machine assignment, i.e. which part will be processed on which machine,

robot moves, i.e. robot’s travel between the machines and the buffers within the cell

and robot speed decisions so that two objectives are to be minimized: makespan and

robot energy consumption.

Parallel machine scheduling is a mature area and lots of papers were published. For

the review of related studies, we refer the reader to the survey papers (Cheng and Sin,

1990; Pfund et al., 2004; Kaabi and Harrath, 2014).

Parallel machine scheduling with common server problems may have different job

characteristics, machine environments, objective functions, etc. Graham et al. (1979)

suggested 3-field problem classification α|β|γ for the scheduling problems. Field

α denotes the machine environment. In this field, P means identical parallel ma-

chines, Q means uniform parallel machines, and R indicates unrelated parallel ma-

chines. Specifically, Pm indicates m parallel machine environment. The second field

β shows the job characteristics. For instance, prec specifies a precedence relationship

exists between the jobs and while pj shows operation times of the jobs are different,

pj = 1 means each operation has a unit processing time. For the server, sj = 1 states

unit setup times, sj = s indicates identical setup times for jobs, sj means different

setup times for the jobs, and sij denotes the setup times are sequence-dependent. In

the field γ, the objective function of the problem is given. For example, Cmax means

minimization of the time of the last job completed, i.e. makespan. In the study by Hall

et al. (2000), the server is denoted in the first field (α) as Sm where m represents the

number of servers. For example, P2, S1|pj, sij|Cmax defines the problem where we

have two parallel machines with a single server. The processing times of parts are dif-

ferent and setup times are sequence-dependent. In this example, we try to minimize

makespan as the objective. The problem that we study here can be represented as

R2, S1/controllablerobotspeed/Cmax, ES which means there are two unrelated ma-

chines, i.e. each job has a different processing time on each machine, robot speed is

controllable and two objective functions are considered: makespan and robot energy

consumption.

Most of the parallel machine scheduling problems without common servers are com-
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putationally difficult. There are some studies that performed complexity analysis for

parallel machines with common servers. Koulamas (1996) proved that makespan

minimization on two parallel machines with a single server is unary NP-hard. S.

Kravchenko and Werner (1997) stated that this problem is still unary NP-hard even

with constant setup times. Hall et al. (2000) analyzed a number of different schedul-

ing goals for different processing and setup time scenarios for parallel machine schedul-

ing problems with a common server. Glass et al. (2000) proved that optimum schedul-

ing of two dedicated parallel machines on a single server for equal setup and process-

ing times with the objective of makespan minimization is an NP-hard problem. They

proposed a heuristic that gives a worst-case ratio of 3
2
. Brucker et al. (2002) contin-

ued to discuss the complexity of parallel machine problems with a single server. They

also developed a mathematical model and two heuristics for two identical parallel ma-

chine environments aiming to minimize completion time. Guirchoun et al. (2005) de-

veloped a polynomial reduction between a parallel machine scheduling problem with

a single server and a hybrid flow-shop scheduling problem with no wait constraint.

Also, an overview of complexity results is presented in that study.

Many studies in the literature have focused on makespan minimization on two identi-

cal machines with a single server. Abdekhodaee and Wirth (2002) constructed an inte-

ger programming formulation for this environment for short and equal part processing

times. They also proposed two heuristic algorithms. Later, Abdekhodaee et al. (2004)

proposed two heuristic algorithms with time complexity O(nlogn), for two special

cases where processing times are equal and setup times are equal. Abdekhodaee et al.

(2006) studied the generalized form of the problem, i.e. P2, S1|pi, si|Cmax and pro-

posed a genetic algorithm, a greedy heuristic, and also adapted Gilmore-Gomory al-

gorithm for the problem. For the online scheduling problem of P2, S1|pj = p, sj|Cmax,

Zhang and Wirth (2009) developed two heuristic algorithms. One of these algorithms

is for the case where jobs have equal length, and the other one is for the case where

equal processing times and equal setup times. Su (2011) considered the dynamic re-

lease times of the jobs and proposed the longest processing time algorithm to solve

the problem. Gan et al. (2012) extended the study by Abdekhodaee et al. (2006) and

developed two MIP (mixed integer programming) formulations and two variants of a

branch-and-price scheme for the problem of P2, S1|pj, sj|Cmax. Jiang et al. (2013)
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allowed preemption of processing and setup. They also developed an algorithm that

finds optimal scheduling for non-preemptive with equal processing times and equal

setup times. Jiang et al. (2014) took unloading into account and applied two heuris-

tics, namely list scheduling and longest processing time, to deal with the problem.

Based on the idea of breaking a schedule into a set of blocks, Hasani et al. (2014a) pro-

posed a mixed-integer linear programming formulation for the P2, S1|pj, sj|Cmax.

Hasani et al. (2015) constructed two algorithms with time complexity O(n2) and re-

ported the results for the large instances that are up to 10,000 jobs. The problem

P2, S1||Cmax can be very complex to solve for large instances, meta-heuristic algo-

rithms are used widely. Hasani et al. (2014c) presented simulated annealing and ge-

netic algorithm. Later, Arnaout (2016) developed ant colony optimization (ACO) and

stated that the proposed ACO outperforms the SA and GA in the study by Hasani et al.

(2014c). Alharkan et al. (2020) introduced tabu search and geometric particle swarm

optimization algorithms. They noted these algorithms have very good performance

for the large instances and also tabu search algorithm outperforms the algorithm pro-

posed by Hasani et al. (2015). For the objective of minimizing the forced idle time,

Hasani et al. (2014b) provide a MIP formulation and TS algorithm.

For several parallel machines scheduling problems with a single server, Kim and Lee

(2012) developed two MIP formulations which are based on the properties of server

waiting to minimize makespan. For the same problem, Elidrissi et al. (2018) pre-

sented two alternative MIP formulations. Idrissi et al. (2018) developed two greedy

heuristics for the problem of P, S1|pj, sj|Cmax. Xie et al. (2012) considered also

removal (unloading) times for m parallel machine scheduling problems with a sin-

gle server and proposed a heuristic algorithm. For the problem of P, S1|pj, sj|Cmax,

Elidrissi et al. (2020) proposed four MIP formulations: network variables, linear or-

dering variables, completion time variables, and time-indexed variables. They re-

ported the formulation with time-index variables has better performance than others.

In some studies, setup times can depend on part sequence. Huang et al. (2010) con-

sidered multiple parallel dedicated machine scheduling problems with a single server

and sequence-dependent setup times to minimize completion time. Hamzadayi and

Yildiz (2016a) proposed a simulated annealing algorithm and a dispatching rule for

the identical parallel machines scheduling problem with sequence-dependent setup
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times. Later, Hamzadayi and Yildiz (2016b) considered two objectives: minimization

of the number of tardy jobs and minimization of the mean-squared deviation. Again,

they proposed a simulated annealing algorithm and a dispatching rule for the problem.

For the same problem environment, Hamzadayi and Yildiz (2017) constructed an MIP

formulation and presented a genetic algorithm and a simulated annealing algorithm

to minimize the makespan. Silva et al. (2019) proposed a MIP formulation based

on arc time-indexed formulation and iterated search algorithm for the same version

of the problem studied by Hamzadayi and Yildiz (2017). The computational find-

ings revealed that the MIP formulation and iterated local search algorithm performs

better than techniques proposed by Hamzadayi and Yildiz (2017). To minimize the

total weighted tardiness, Bektur and Saraç (2019) proposed an MIP and two meta-

heuristic algorithms, which are genetic algorithm and simulated annealing algorithm

for unrelated multiple machine scheduling problems with sequence-dependent setup

times and a single server.

There are also studies considering multiple servers in the literature. Kravchenko and

Wegner (1999) considered m parallel machines scheduling problems with a single

server and multiple servers to minimize makespan. They assumed that setup times

equal to 1 for all jobs and developed a polynomial-time exact algorithm. Motivat-

ing from the limited unloading capacity in vehicle scheduling in logistics, Ou et al.

(2009) considered multiple parallel machine scheduling problems with multiple un-

loading servers. Here, there is no need to set up operations but after the jobs are

finished, unloading operations are carried out with servers. Werner and Kravchenko

(2010) developed a pseudo-polynomial algorithm form parallel machines scheduling

problems with m-1 servers and unit setup times.

Benmansour et al. (2018) investigated single-processor scheduling problems with

time restrictions (STR) which are studied by Benmansour et al. (2014) and Braun

et al. (2013). In STR, a set of unrelated jobs must be processed on a single processor.

The number of jobs being processed during any time must be less than or equal to a

particular integer valueB. Benmansour et al. (2018) showed that the STR withB = 2

is equivalent to the problem of P2, S1|pj = p, sj|Cmax. According to Bish (2003),

the multiple-crane-constrained vehicle scheduling and location problem in a container

terminal is similar to P, S1|pj, sj|Cmax|, where crane loading and unloading opera-
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tions represent setup times, cranes represent servers, each container corresponds to a

job, and vehicles to machines. Torjai and Kruzslicz (2015) introduced the biomass

truck scheduling problem (BTS) and stated that the problem can be formulated as a

parallel machine scheduling with a single server problem.

In this thesis, we study two parallel machines served by a material handling robot.

Each job is processed on a selected machine and must be carried from the input buffer

to its machine first, and then from the machine to the output buffer. Different than the

aforementioned studies, we consider that the robot’s move time between the buffer-

s/machines can be increased or decreased by changing its speed and speed decisions

affect the robot’s energy consumption. The problem is to find the part sequence for

processing, part-machine assignment, robot moves, and robot speed at each move so

that both makespan and robot energy consumption are minimized.
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CHAPTER 3

CYCLIC SCHEDULING IN A TWO MACHINE FLOW-SHOP ROBOTIC

CELL WITH ROBOT SPEED DECISIONS

In this chapter, we consider a cyclic scheduling problem in a two machine flow-shop

robotic cell. In this robotic cell, there is an input buffer where the parts are located

at the beginning. Each part is first processed on the first machine, then on the second

machine, and then delivered to the output buffer. The parts are not identical, i.e. each

part has different processing time requirements on the machines. All part handling

operations between machines/buffers are done by a robot. This is a cyclic scheduling

problem, i.e. we need to schedule the minimum part set. So, this scheduling problem

needs to be solved only when the minimum part set changes which usually does not

occur every day.

Different than the similar studies in robotic cell scheduling literature, we assume that

the robot’s speed during its moves between machines/buffers is controllable. Speed-

ing up the robot shortens the cycle time, which is one of the objectives considered

in robotic cell scheduling problems. On the other hand, this increases the energy

consumption of the robot. Then, the problem is to find efficient solutions for cycle

time and energy consumption objectives. Finding a solution to the problem implies

sequencing the parts, scheduling robot activities, and finding the best robot speed (or

move time) values.

In this chapter, we first give the problem definition. We present the robot cycles given

in the literature. We develop a mathematical model for the problem. Finally, we

present the computational results.
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3.1 Problem Definition

In this scheduling environment, each part is carried from the input buffer to the first

machine. The part is processed on the first machine then taken to the second ma-

chine. After its process is finished on the second machine, it is finally delivered to the

output buffer. During the flow of parts, the robot performs all handling and loading-

unloading operations. Loading operation is done after the robot with a part arrives at

an empty machine. The robot loads the part on the machine. Unloading is done when

an empty robot arrives at a loaded machine. If the process on the machine is finished,

the robot unloads the part from the machine.

In the literature, it was shown by Aneja and Kamoun (1999) that for the two ma-

chine robotic cell scheduling problems, there are two possible robot cycles, i.e. cyclic

robot activity sequences. We will give the detailed descriptions of these two cycles

in Section 3.1.1. The studies in the literature consider the cycle time minimization

problem. In this thesis, we consider the robot speed control decisions in addition to

robot scheduling decisions. The energy consumption of a robot depends on its speed,

and a nonlinear function is assumed for the energy consumption. In Section 3.1.2, we

present the robot energy consumption function used in this study.

In this problem, we are given a set of parts to be produced. In the part set, more than

one part of the same type can exist. Parts of the same type have the same characteris-

tics such as processing times on the machines. Therefore, the parts are produced in a

repetitive manner from a minimal part set. So, the problem is to find a schedule for a

minimal part set. Then, this schedule is used repetitively to produce all parts.

In this problem, since we consider robot speed control decisions, we have two ob-

jective functions to minimize: cycle time and robot energy consumption. When the

speed of the robot is fixed and given for all moves, the problem is to find the part se-

quence and robot cycles so that cycle time is minimized. Aneja and Kamoun (1999)

provided an exact algorithm based on the traveling salesman problem with a spe-

cial cost structure and have shown that the algorithm has time complexity O(nlogn).

When robot speed control is considered, in addition to part sequencing and robot cy-

cle selection decisions, robot speed decision has to be made for each robot move.
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Since we have two conflicting objectives we need to find efficient solutions for the

problem.

The basic notation used in this chapter is given below:

Notation:
i: index for parts

l ∈ {1, 2}: index for the cycle type, Sl

σ(i): successor part of part i

P1,i: processing time of part i in machine 1

P2,i: processing time of part i in machine 2

ε: loading and unloading time of the machines

h ∈ {e, f}: the status of the robot, f : full, e : empty

dm: distance travelled in move m

In the next section, we describe the possible robot cycles given in the literature.

3.1.1 Cycles

While the parts are processed, the robot follows certain moves that form two cycles

named S1 and S2 in the literature. In each cycle, one unit part is produced so they

are called 1-unit cycles. In these cycles, the robot performs some activities which are

loading-unloading operations, moves between machines/buffers, and waiting in front

of machines. The cycles begin and end at the same state. At the beginning and end of

a cycle, the first machine is empty, the second machine was just loaded, and the robot

is in front of the second machine. In both cycles, one part is processed on machine 2,

another part is taken from input buffer and it is loaded on machine 1, processed and

then carried to machine 2.

In Figures 3.1 and 3.2, we consider the buffers/machines are in a line, and the robot

moves in a linear path. We assume the distances are additive. I indicates the path

between the input buffer and machine 1. D represents the path between machines.

O is the path between machine 1 and the output buffer. Z in cycle S1, is the path

between the input buffer and the output buffer. Because the distances are additive,

the distance of path Z is the sum of the distances of paths I , D, and O. In cycle S2,

X shows the path between the input buffer and machine 2. Y is the path between
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machine 1 and the output buffer in cycle S2. In the Figures, next to each arc, we put

a label like a : T hg . In this label a is the order of move in the cycle, g is the path the

robot traveled in the move, h is the status of the robot during the move. Continuous

lines show full robot moves, whereas dashed lines indicate empty robot moves.

Cycle S1

In Figure 3.1, we show the robot move sequence in cycle S1. As mentioned, the cycle

begins right after machine 2 is loaded. In cycle S1, the robot performs the following

activities. The robot waits for completion of the process at machine 2 (w2: waiting

time), then takes the part (ε: load/unload time), moves to the output buffer (T f0 : move

time), drops the part (ε). After that, the robot moves to the input buffer (T eZ), takes

the next part (ε), moves to machine 1 (T fI ), load the part to machine 1 (ε), and waits

until the process is finished (w1), then unloads the part from (ε), carries the part to

machine 2 (T fD) and loads the part to machine 2.

Figure 3.1: The robot move sequence in cycle S1

Cycle S2

The robot move sequence in cycle S2 is illustrated in Figure 3.2. At the beginning

of the cycle, the robot is in front of machine 2 after loading a part on machine 2. In

cycle S2, the robot performs the following activities. The robot moves to the input

buffer (T eX), picks the next part (ε), then carries it to machine 1 (T fI ), and loads to

machine 1 (ε). After that, the robot moves to machine 2 (T eD), if the process of the

part in machine 2 is finished, the robot unloads (ε), else the robot waits until the end

of the process (w2) and then unloads the part from machine 2 (ε). After that, the robot

handles the part to the output buffer (T fO) and drops it (ε). Then, the robot returns

to machine 1 (T eY ) and waits (w1) if the processing of the part in machine 1 is not

finished yet. After the robot unloads the part from machine 1 (ε), it carries the part to

machine 2 (T fD) and loads it to machine 2 (ε).

22



Figure 3.2: The robot move sequence in cycle S2

For the cycle time minimization in a two machine flow shop robotic cell with non-

identical parts, it is shown that the robotic schedule must be a sequence of 1-unit

cycles: S1, S2. Since, a part is completed and delivered to the output buffer in each

cycle, the solution to the cycle time minimization problem can be represented as a

sequence of parts and a sequence of 1-unit cycles. In the next section, we show cycle

time calculation for S1 and S2 cycles.

Cycle Time Calculation for 1-unit Cycles S1 and S2

In both S1 and S2 cycles, each machine is loaded and unloaded once, the robot unloads

one part from the input buffer and loads one part to the output buffer. So, there are 3

loading and 3 unloading activities (6×ε) during each cycle.

There are two types of waiting: full waiting and partial waiting. Full waiting occurs

when the robot loads the machine and waits until the end of the process. In cycle

S1, there are two full waiting activities. Partial waiting occurs when the robot loads

the machine, then leaves to complete some other operations before returning to the

machine. If the process is not finished yet when the robot is back, then the robot waits

for the process before unloading the part. In cycle S2, there are two partial waiting

activities. The duration of a full waiting is equal to the part’s processing time. The

duration of a partial waiting is less than the part’s processing time. In this chapter, we

denote waiting time by wk(i) where k is machine index and i is the part index, i.e. the

waiting time occurred at machine k before unloading part i.

Parts are processed in a sequence and during a cycle (S1 or S2), one part is processed

on machine 2, and the successor part is processed on machine 1. Let σ(i) be the suc-
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cessor of part i in the part sequence. Then, we can define CT li,σ(i) as completion time

of 1-unit cycle l where part i is processed on machine 2, and part σ(i) is processed on

machine 1. Let T hm be time elapsed in robot move m when robot status is h (empty, e

or full, f , h ∈ {e, f}).

The cycle time of cycle S1 for parts i and σ(i) is the sum of waiting times, the time

elapsed during robot moves, and the time required loading-unloading operations.

CT S1

i,σ(i) = w2(i) + ε+ T fO + ε+ T eZ + ε+ T fI + ε+ w1(σ(i)) + ε+ T fD + ε

= 6ε+ w1(σ(i)) + w2(i) + T fO + T eZ + T fI + T fD

In cycle S1, w2(i) and w1(σ(i)) are full waiting activities. w2(i) equals to the pro-

cessing time of part i on machine 2 and w1(σ(i)) equals to the processing time of part

σ(i) on machine 1. Cycle time of S1 can be expressed as below:

CT S1

i,σ(i) = 6ε+ P1,σ(i) + P2,i + T fO + T eZ + T fI + T fD (3.1)

Similarly, one can calculate the cycle time for S2 for parts i and σ(i) as below:

CT S2

i,σ(i) = T eX + ε+ T fI + ε+ T eD + w2(i) + ε+ T fO + ε+ T eY + w1(σ(i)) + ε+ T fD

= 6ε+ w1(σ(i)) + w2(i) + T eX + T fI + T eD + T fO + T eY + T fD

In S2 cycle, after the robot loads a part to a machine, it performs some tasks and

then returns to unload the part. Therefore, as discussed, partial waiting can occur.

The waiting time for part i in front of machine 2 (w2(i)) and for part σ(i) in front of

machine 1 (w1(σ(i))) are given below:

w2(i) = max{0, P2,i − (T eX + ε+ T fI + ε+ T eD)}

= max{0, P2,i − (2ε+ T eX + T fI + T eD)} (3.2)

w1(σ(i)) = max{0, P1,i − (T eD + w2(i) + ε+ T fO + ε+ T eY )}

= max{0, P1,σ(i) − (2ε+ T eD + w2(i) + T fO + T eY )} (3.3)

By adding the waiting times in equations 3.2 and 3.3, we can calculate the total wait-

ing time in cycle S2 as below:

w2(i)+w1(σ(i)) = max{0, P2,i−(2ε+T eX+T fI +T eD), P1,σ(i)−(2ε+T eD+T fO+T eY )}
(3.4)
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Note that, if we have no waiting for both machines in cycle S2, the total waiting (3.4)

will be zero. If we have to wait for only machine 2, then the total waiting is equal

to the difference between the processing time of the part loaded to machine 2 and

the time elapsed from loading machine 2 to unloading it. If the robot waits for both

machines or for only machine 1, the waiting time is equal to the difference between

processing time of the part loaded to machine 1 and the time it takes from loading

machine 1 to unloading it. In addition, we define MS2
l to describe moves between

loading and unloading machine l in cycle S2. The cycle time for S2 for parts i and

σ(i) can be expressed as follows:

CT S2

i,σ(i) = 6ε+ T eX + T fI + T eD + T fO + T eY + T fD

+max{0, P2,i − (2ε+ T eX + T fI + T eD), P1,σ(i) − (2ε+ T eD + T fO + T eY )}
(3.5)

3.1.2 Energy Consumption Function

In this problem, we consider the energy consumed during the moves of the robot

between machine/buffer locations. We assume that during a move, the robot moves

at a constant speed determined by the decision-maker. The time/energy it takes to

accelerate and decelerate the robot is negligible. The amount of energy consumed

during a move is determined by the speed of the robot and the distance traveled by

the robot. For a robot move, we use the energy consumption function below:

F (v) = c · d · vk (3.6)

In F (v), v is the speed of the robot and its value varies between the minimum speed

(vmin) and the maximum speed (vmax). d is the distance traveled during the move

and c is a constant that depends on robot’s technical specifications and the load on

the robot. For empty moves c = ce and for full moves c = cf where cf ≥ ce. The

exponent k > 1 reflects the natural relationship between speed and energy. k > 1 im-

plies the energy consumption is a convex, increasing function of speed. As the speed

increases, it requires more energy to speed up the robot. This natural relationship

between the speed of a work/process and the resource consumed is used in many dif-
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ferent contexts. We use the same energy consumption function as Gürel et al. (2019),

Gultekin et al. (2021) and Güzel (2021). Given a schedule, i.e. a sequence of robot

routes and parts, the total energy consumption of the robot is the sum of the energy

consumed in all moves in the sequence.

For a given robot move, energy consumption can be expressed as a function of its

move time. The time elapsed during a move is δ = d
v
. By using δ, we can state the

energy consumption function of a move as follows:

F (δ) = c · dk+1 · δ−k (3.7)

The function 3.7 is a decreasing convex function as we can see in the Figure 3.3.

δ

F (δ)

Energy Consumption

Figure 3.3: Energy consumption function with respect to time elapsed

3.2 Mathematical Model

In both types of cycles, a part is completed in machine 2 and placed in the output

buffer, the next part is picked up from the input buffer and completed in machine 1,

then carried and loaded to machine 2. Therefore, a part is finished and another part

is begun to be processed in each cycle. Using this, we can formulate the problem

as a specific type of traveling salesman problem (TSP). We can consider the parts as

nodes and the cycles can be considered as arcs connecting a part that is to be finished,

to a part that will be processed next. Each arc can be one of two types of cycle. In

this case, we have two types of cost for an arc, cycle time for the selected 1-unit

cycle and energy consumption. We try to find a tour that visits all nodes (parts) that
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gives the minimum energy consumption and minimum cycle time for the part set. An

example solution for 5 parts is given in Figure 3.4. While the nodes represent parts,

the arcs denote the cycle types. The part sequence is 1-2-5-4-3 that creates a tour

in that example. The arc from part 1 to part 2 indicates that part 1 is processed on

machine 2, and part 2 is processed on machine 1 using cycle S1.

Figure 3.4: An example solution

Sets:

N : set of parts

M : set of robot moves

Ml: set of robot moves in cycle Sl

M e
l , M f

l : set of full(f ) and empty (e) robot moves in cycle Sl

MS2
l : set of moves between loading and unloading machine l in cycle S2

Parameters:

ch: energy consumption constant when robot is in the state h ∈ {e, f}
C̄: cycle time upper bound

Decision variables:
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xi,j,l:


1, if part i is processed on machine 2 and part j is processed on

machine 1 using cycle Sl

0, Otherwise

δi,j,l,m: the time elapsed in move m while part i is processed on machine 2

and part j is processed on machine 1 using cycle Sl

Ci,j: the time elapsed during a cycle in which part j succeeds part i in

a robot cycle

ui: auxiliary variable used in subtour eliminating constraints

Note that, during each robot cycle (S1 or S2), one part is processed on machine 1 and

another part is processed on machine 2. xi,j,l=1 means during a robot cycle Sl, part

i is processed on machine 2 and delivered to the output buffer and part j is unloaded

from the input buffer, processed on machine 1, and delivered to machine 2.

min
∑
i∈N

∑
j∈N

∑
l∈{1,2}

 ∑
m∈Me

l

ce
dk+1
m

δki,j,l,m
+
∑
m∈Mf

l

cf
dk+1
m

δki,j,l,m

 (3.8)

min
∑
i∈N

∑
j∈N

Ci,j (3.9)

s.t.
∑
j∈N

∑
l∈{1,2}

xi,j,l = 1 ∀i ∈ N (3.10)

∑
i∈N

∑
l∈{1,2}

xi,j,l = 1 ∀j ∈ N (3.11)

∑
l∈{1,2}

xi,j,l ≤ 1 ∀i, j ∈ N (3.12)

ui − uj + n
∑
l∈{1,2}

xi,j,l ≤ n− 1 ∀i, j ∈ N \ {1}, i 6= j (3.13)

δi,j,l,m ≤
dm
vmin

xi,j,l ∀i, j ∈ N, ∀l ∈ {1, 2}, ∀m ∈Ml (3.14)

δi,j,l,m ≥
dm
vmax

xi,j,l ∀i, j ∈ N,∀l ∈ {1, 2},∀m ∈Ml (3.15)

(6ε+ P2,i + P1,j) xij1 + 6ε xij2

+
∑
l∈{1,2}

∑
m∈Ml

δi,j,l,m ≤ Ci,j ∀i, j ∈ N (3.16)

(6ε+ P2,i + P1,j) xij1 + (4ε+ P2,i) xij2
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+
∑
l∈{1,2}

∑
m∈Ml

δi,j,l,m −
∑

m∈MS2
2

δi,j,2,m ≤ Ci,j ∀i, j ∈ N (3.17)

(6ε+ P2,i + P1,j) xij1 + (4ε+ P1,j) xij2

+
∑
l∈{1,2}

∑
m∈Ml

δi,j,l,m −
∑

m∈MS2
1

δi,j,2,m ≤ Ci,j ∀i, j ∈ N (3.18)

xi,j,l ∈ {0, 1} ∀i, j ∈ N,∀l ∈ {1, 2} (3.19)

δi,j,l,m ≥ 0 ∀i, j ∈ N, ∀l ∈ {1, 2},∀m ∈Ml (3.20)

ui ≥ 0 ∀i ∈ N \ {1} (3.21)

There are two objective functions to minimize. (3.8) gives the total energy consump-

tion of the robot required to process all parts. (3.9) is the total cycle time required

to process all parts. Constraints (3.10) and (3.11), ensure that each part precedes a

part and succeeds another part in the cycle. Constraints (3.12) guarantee that for two

consecutive parts we can choose only one of the two cycles S1, S2. The order of the

parts should form a tour, so we use constraints (3.13) to eliminate subtours. With

those constraints, we ensure that every feasible solution should pass through part 1. If

we add all the inequalities corresponding to
∑

l∈{1,2} xi,j,l = 1 for any subtour with k

parts that do not pass through part 1, we get nk ≤ (n− 1)k which is a contradiction.

Note that constraints (3.10) - (3.13) ensure there is only one tour that passes through

part 1. Thus, we ensure only one tour that covers all parts can be found. Constraints

(3.14) - (3.15) guarantee that robot move times satisfy lower and upper bounds deter-

mined by the distance taken during that move and the robot’s minimum and maximum

speed. From cycle time calculations in equations (3.1) and (3.5), Constraints (3.16)

- (3.18) determine the cycle times for consecutive two parts in a cycle. Constraints

(3.19)-(3.21) define the domains of decision variables.

As discussed, we have two conflicting objectives: cycle time for the given part set

and total robot energy consumption. The problem is to find efficient solutions for the

problem. We use the ε-constraint approach to find efficient solutions. We minimize

energy consumption subject to an upper bound on cycle time objective. The resulting

problem is given below:

min
∑
i∈N

∑
j∈N

∑
l∈{1,2}

 ∑
m∈Me

l

ce
dk+1
m

δki,j,l,m
+
∑
m∈Mf

l

cf
dk+1
m

δki,j,l,m

+ ε

(∑
i∈N

∑
j∈N

Ci,j

)
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s.t.
∑
i∈N

∑
j∈N

Ci,j ≤ C̄ (3.22)

constraints (3.10)− (3.21)

where C̄ is the upper bound imposed on the total cycle time for the part set. The model

above is a mixed-integer nonlinear programming problem. The energy consumption

function in the objective includes nonlinear, convex terms. In the next section, we give

a second-order conic representation of the model, so that the problem can be solved

using branch-and-bound software which can solve conic quadratic subproblems.

3.2.1 Second-Order Conic Programming Reformulation

A convex nonlinear objective function is used in the mathematical model proposed

for minimizing energy consumption. To solve it, we reformulate it using second-

order conic programming (SOCP). Alizadeh and Goldfarb (2001) present methods

for solving convex optimization problems. Using a technique they described, we can

represent the model as MISOCP. We have δ−k as a nonlinear and convex term in the

energy consumption function (3.7). Different MISOCP reformulations are required

for different values of the constant k. In this section, we demonstrate two MISOCP

formulations with k values of 1.5 and 2.

MISOCP Formulation for k = 2

When k = 2, the objective function is c · d3
δ2

. Because the variables x are binary in the

mathematical model, we can redefine the objective function as c · d3
δ2
· x. Let τ be an

auxiliary nonnegative continuous variable that presents x
δ2

. Then, we can redefine the

objective function as c · d3 · τ by adding the constraint (3.24) because at an optimal

solution to this minimization problem the constraint is always binding, i.e. τ = x
δ2

.

min c · d
3

δ2
· x = c · d3 · τ (3.23)

x

δ2
≤ τ (3.24)

By multiplying both of the sides of the inequality (3.24) by δ2, we get x ≤ τ · δ2.
Because x is binary variable we can convert x ≤ τ · δ2 to the inequality (3.25) by
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multiplying left hand side by x3, right hand side by x.

x4 ≤ τ · δ2 · x (3.25)

Then, we introduce an auxiliary nonnegative continuous variable ω satisfying the

inequality (3.26).

ω2 ≤ τ · x (3.26)

From the inequalities (3.25) and (3.26), we can get the inequality x4 ≤ ω2 · δ2. If we

take the square root of both sides, we get the inequality (3.27).

x2 ≤ ω · δ (3.27)

Here, (3.26) and (3.27) are hyperbolic inequalities which represent inequality (3.24).

Inequalities (3.26) and (3.27) can be equivalently expressed as SOCP inequalities

(3.28) and (3.29), respectively.

4ω2 + (τ − x)2 ≤ (τ + x)2 (3.28)

4x2 + (ω − δ)2 ≤ (ω + δ)2 (3.29)

The energy consumption minimization problem can be reformulated as MISOCP be-

low.

min
∑
i∈K

∑
j∈K

∑
l∈{1,2}

 ∑
m∈Me

r

ce · d3m · τi,j,l,m +
∑
m∈Mf

r

cf · d3m · τi,j,l,m


+ ε

(∑
i∈N

∑
j∈N

Ci,j

)
(3.30)

(3.22) and (3.10)− (3.21) (3.31)

4(ωi,j,l,m)2 + (τi,j,l,m − xi,r,t)2 ≤ (τi,j,l,m + xi,r,t)
2

∀i, j ∈ N,∀l ∈ {1, 2},∀m ∈Ml (3.32)

4(xi,r,t)
2 + (ωi,j,l,m − δi,j,l,m)2 ≤ (ωi,j,l,m + δi,j,l,m)2

∀i, j ∈ N,∀l ∈ {1, 2},∀m ∈Ml (3.33)

τi,j,l,m, ωi,j,l,m ≥ 0 ∀i, j ∈ N,∀l ∈ {1, 2},∀m ∈Ml (3.34)

MISOCP Formulation for k = 1.5
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When k = 1.5, each convex term in the objective function will be of the form c · d
5
2

δ
3
2

.

Because the variables x are binary in the mathematical model, we can redefine the

objection function as c · d
5
2

δ
3
2
· x. Let τ be an auxiliary nonnegative continuous variable

that presents x

δ
3
2

. Then, we can redefine the objective function as c·d 5
2 ·τ by adding the

constraint (3.36) because at the optimal solution this constraint is binding satisfying

τ = x

δ
3
2

.

min c · d
5
2

δ
3
2

· x = c · d
5
2 · τ (3.35)

x

δ
3
2

≤ τ (3.36)

By multiplying both of the sides of the inequality (3.36) by δ
3
2 , we get x ≤ τ · δ 3

2 .

Because x is binary variable we can convert x ≤ τ · δ 3
2 to the inequality (3.37) by

squaring both sides, then multiplying left hand side by x6.

x8 ≤ τ 2 · δ3 (3.37)

Then, we introduce auxiliary nonnegative continuous variables ω1, ω2 and ω3 satisfy-

ing the inequalities (3.38)-(3.41).

ω2
1 ≤ δ (3.38)

ω2
2 ≤ ω1 (3.39)

ω2
3 ≤ τ · δ (3.40)

x2 ≤ ω2 · ω3 (3.41)

Here, (3.38)-(3.41) are conic representable inequalities for the inequality (3.37) and

equivalent to the inequalities (3.28) and (3.29).

4ω2
1 + (δ − 1)2 ≤ (δ + 1)2 (3.42)

4ω2
2 + (ω1 − 1)2 ≤ (ω1 + 1)2 (3.43)
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4ω2
3 + (τ − δ)2 ≤ (τ + δ)2 (3.44)

4x2 + (ω2 − ω3)
2 ≤ (ω2 + ω3)

2 (3.45)

The energy consumption minimization problem can be reformulated as MISOCP be-

low.

min
∑
i∈K

∑
r∈R

∑
t∈T

 ∑
m∈Me

r

ce · d
5
2
m · τi,j,l,m +

∑
m∈Mf

r

cf · d
5
2
m · τi,j,l,m


+ ε

(∑
i∈N

∑
j∈N

Ci,j

)
(3.46)

(3.22) and (3.10)− (3.21) (3.47)

4(ω1,i,j,l,m)2 + (δi,j,l,m − 1)2 ≤ (δi,j,l,m + 1)2

∀i, j ∈ N, ∀l ∈ {1, 2}, ∀m ∈Ml (3.48)

4(ω2,i,j,l,m)2 + (ω1,i,j,l,m − 1)2 ≤ (ω1,i,j,l,m + 1)2

∀i, j ∈ N, ∀l ∈ {1, 2}, ∀m ∈Ml (3.49)

4(ω3,i,j,l,m)2 + (τi,j,l,m − δi,j,l,m)2 ≤ (τi,j,l,m + δi,j,l,m)2

∀i, j ∈ N, ∀l ∈ {1, 2}, ∀m ∈Ml (3.50)

4(xi,r,t)
2 + (ω2,i,j,l,m − ω3,i,j,l,m)2 ≤ (ω2,i,j,l,m − ω3,i,j,l,m)2

∀i, j ∈ N, ∀l ∈ {1, 2}, ∀m ∈Ml (3.51)

τi,j,l,m, ω1,i,j,l,m, ω2,i,j,l,m, ω3,i,j,l,m ≥ 0

∀i, j ∈ N, ∀l ∈ {1, 2},∀m ∈Ml (3.52)

3.3 Computational Results

In this section, we present a numerical study on the problem and assess the compu-

tational performance of the mathematical model. We first present a set of efficient

solutions to observe the behavior of the efficient frontier for energy consumption and

cycle time objectives. After that, we examine the effects of problem parameters on

the performance of the mathematical model. Finally, we show how robot speed con-

trol strategy affects energy consumption levels in the given robotic cell scheduling
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problem.

3.3.1 Experimental Settings

In the two machine flow-shop robotic cell environment, we have an input buffer, two

machines, and an output buffer arranged in line. Cycle time and robot energy con-

sumption objectives are affected by the number of parts in the minimum part set,

distances between machines/buffers, processing times of jobs on machines (P1, P2),

robot speed upper bound (vmax) and parameters (ce − cf and k) of robot energy con-

sumption function. In Table 3.1, we give the alternative values for these experimental

parameters.

Table 3.1: Experimental Settings

Number of parts: 10, 20, 50

Distance Scenarios: Short, Long, Mixed

Processing Times: Equal LV, Equal HV, P1 > P2, P2 > P1

cf − ce: 2-2, 2.5-2

vmax: 2.0,1.5

k: 2.0,1.5

We generate instances with 10, 20, and 50 parts. In this problem, the parts are pro-

duced in a cyclic schedule. So, a minimal part set (MPS) is used to produce all parts.

For example, consider we have 100 units of part A, 200 units of part B, and 300 units

of C. In this case, our MPS includes 1 unit of part A, 2 units of part B, and 3 units of

part C. We try to find a schedule for the MPS and repeat the schedule 100 times for

producing all parts. Therefore, the number of parts in the parameters setting reflects

the number of parts in MPS not the total number of parts. A minimum part set of size

10 or 20 is quite realistic. 50 parts are a very high number for the number of real-life

parts MPS. Solving the problem for 50 parts may take too long. So, we generate only

one instance with 50 parts to show the performance of the model.

As can be seen in the Figures 3.1 and 3.2, we have three distances in the layout: one
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between the input buffer and machine 1, one between machines, and one between

machine 2 and the output buffer. The distances are additive. In experimental settings,

we consider three distance scenarios. In scenarios Short and Long, the distances are

equal to each other. Distances are 10 m. in scenario Short and 20 m. in scenario

Long. In scenario Mixed, the distance between the two machines is 20 m. while

other distances are 10 m. In all instances, we assume the time of loading/unloading

operations (ε) is equal to one second.

In this problem, the parts are non-identical so their processing times are different

from each other. We consider four scenarios for the processing times of the parts.

First, in scenario Equal LV and Equal HV, the processing time of a part on machine

1 is equal to the processing time of that part on machine 2. In scenario Equal HV

processing times are generated from a larger range, so processing times have higher

variance. In Equal LV processing times are generated from a uniform distribution

between 80 seconds and 100 seconds (U(80, 100)). In scenario Equal HV, processing

times are generated from U(60, 120). In scenario P1 > P2 (P2 > P1), we assume

the processing time of a part on machine 1 (machine 2) is greater than the processing

time on machine 2 (machine 1). Processing times are generated using uniform distri-

bution between 80 seconds and 100 seconds for machine 1 (machine 2), between 100

seconds and 120 seconds for machine 2 (machine 1).

cf − ce, vmax, and k are parameters related to the energy consumption function which

is given in equation 3.6. We consider two parameter settings for cf − ce. In the first,

we assume the energy consumption of the robot is the same for robot status of full

and empty (cf = ce = 2). The other is the energy consumption is higher when the

robot is full (cf = 2.5, ce = 2, cf > ce). We assume the minimum speed for the robot

is 0.5 m/s. We consider two scenarios for maximum speeds which are 2 m/s (high)

and 1.5 m/s (low). We use two values for the exponent k which are 2 (high) and 1.5

(low).

We have a base parameter setting with Short distances, Equal LV, cf = ce = 2,

vmax = 2, k = 2. At each time, we change a parameter while others are the same as in

the base setting. For example, if we change processing time scenario from Equal LV

to P1 > P2, other parameters stay the same i.e. Short distances, cf = ce, vmax = 2,
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k = 2. So, we have nine experimental settings in total. For 10 and 20 parts settings,

we produced five replications. In replications, we regenerate processing times. We

generate only one instance with the base parameter setting for the number of parts 50

to show the performance of the model because the number of 50 parts is not a very

common situation in two machine flow-shop manufacturing environments.

For each problem instance, we solve the mathematical model for 10 different cycle

time upper bound values, named C̄j where 1 ≤ j ≤ 10. C̄1 is the minimum possi-

ble cycle time level achieved by setting robot speed to vmax in all moves. The part

sequence and robot cycles that minimize cycle time are found by the algorithm devel-

oped by Aneja and Kamoun (1999). We found C̄10 by setting the robot speed to vmin

in all moves and by using cycle S1 for all cycles in the schedule. The other cycle time

levels (C̄2-C̄9) are equally separated between C̄1 and C̄10.

We use IBM ILOG CPLEX 12.10 as the solver to perform the computational tests.

We perform the test with a Java compiler on Intel Xeon(R) E-2246G (3.6 GHz and

16 GB RAM). The time limit of the solver is set to 5000 seconds. We get the best

solution and gap from the solver if it does not reach optimality in the time limit.

3.3.2 Energy Consumption vs. Cycle Time Objectives

In this section, we present a set of efficient solutions for a selected 10 parts instance

with the base parameter settings. Figure 3.5 gives efficient points given by the math-

ematical model.

As can be seen in Figure 3.5, energy consumption decreases as the cycle time in-

creases. When we have more time to complete parts, the robot intends to move slower

to decrease energy consumption. In shorter cycles, the robot intends to move faster

because we have a shorter time to complete parts. This causes more energy consump-

tion. Because we have a decreasing convex energy consumption function with respect

to move time, as the cycle time increases it becomes more costly to decrease energy

consumption further.

The trade-off between energy consumption and cycle time can be used to save energy.

When a higher throughput rate is needed, the cell would work with lower cycle times,
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Figure 3.5: A set of efficient solutions
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although it would consume more power. However, when we have a flexible due date

for the completion of parts, energy consumption could be more important. Then, the

robotic cell can work at higher cycle times and save energy.

For the efficient solutions presented above, in Table 3.2 we give the number of times

S1 and S2 cycles are used in each solution. If cycle time is more critical (i.e. shorter

cycle times), S2 cycles are dominantly used. As cycle time becomes longer i.e. energy

consumption becomes more critical, S1 cycles were used more. In cycle S2, the robot

carries out some other activities while a job is being processed on a machine. On

the other hand, we have full waiting in cycle S1. So, the time elapsed in S2 cycle is

generally lower than the time elapsed when S1 is used. However, the robot travels

more distance in cycle S2. Therefore, to achieve lower cycle times, the model prefers

more S2 cycles.

3.3.3 Computational Performance of Mathematical Model

In this section, we investigate how the parameters affect the performance of the

model. We perform tests on instances that are generated as described above. We

solved problems using IBM CPLEX. we set the time limit to 5,000 CPU seconds.

92% of the instances with 10 parts and 89% of the instances with 20 parts are solved
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Table 3.2: Distribution of robot cycles between S1 and S2

Cycle Time # S1 # S2

C̄1 0 10

C̄2 0 10

C̄3 0 10

C̄4 0 10

C̄5 2 8

C̄6 3 7

C̄7 5 5

C̄8 7 3

C̄9 8 2

C̄10 10 0

in less than 5% gap. On average, the model is terminated in 1,755 CPU seconds for

the instances with 10 parts while this value is 2946 seconds for the instances with 20

parts.

In Tables 3.3, 3.4, and 3.5, we give the percentage of instances solved with less than

1% gap, percentage of instances that have greater than 1% and less than 5% gap, and

average CPU times. The optimality gap levels achieved and the CPU times spent

show that it is easier to solve the model for lower and higher cycle time levels. As can

be concluded in Table 3.3, while there is almost no difference between instances with

different distance scenarios in 10 parts, the instances with long and mixed distances

show better performance in 20 parts.

The results for instances with different processing time scenarios are given in Table

3.4. When the variance is high in processing times (Equal HV), we have less CPU

times and the performance of the model is better for the instances with 10 parts. For

the instances with 20 parts, we get more results that have less than 1% gap. However,

the percentage of the results greater than 5% is higher. When the processing times

are greater on machine 1 or machine 2, there is no obvious difference between the

results.
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In Table 3.5, we give the results for different robot parameters. When the energy

consumption is greater in full status (cf > ce), there is no obvious difference in

the performance of the model. However, with a lower maximum speed (vmax), the

performance of the model gets worse. When k = 1.5, the model has less than 1% gap

in only 10% of the instances with 10 parts. There are no results with less than 5% gap

for 20 parts. So, with k = 1.5, we can say that it is harder to solve the model.

We give the results of the instance with 50 parts using base parameter settings in Table

3.6. For all cycle time upper bounds, the model hits the time limit. However, we can

get less than 5% gap in 60% of the cases.

3.3.4 How much energy can be saved by the robot speed control strategy?

In practice, usually, the robots are operated at their highest speed to achieve max-

imum throughput. With the robot speed control approach, we can achieve lower

energy consumption while satisfying a required throughput level. We examine how

much energy saving is achieved with the idea of controlling robot speed in this sec-

tion. As mentioned before, to calculate the minimum cycle time (C̄1), we use a cycle

time minimization algorithm proposed by Aneja and Kamoun (1999) with the robot

moves at their maximum speed. At C̄1, this solution has certain energy consumption.

We, then solve our mathematical model with a cycle time level C̄1 and minimize en-

ergy consumption. We calculate energy saving by comparing the energy consumption

of these two solutions. In Table 3.7, we give the average energy saving rates in per-

centage with respect to different parameter settings. We have 23.5% energy saving in

overall.

Gürel et al. (2019) showed that robot can be slowed down by utilizing the partial

waiting times in S2 cycle and save energy. Similarly, in this problem, S2 cycles are

used and partial waiting times occur. In Table 3.7, we present the average energy

saving (%) achieved. Distance between the machines and buffers affects energy sav-

ing. When the distances are shorter higher energy saving is achieved as robot can

be slowed down more compared to long distance scenario. However, if we increase

only the distance between machines (Mixed), we achieve greater energy saving. This

shows the distance between machines is more critical for energy saving.
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Table 3.6: Results for the instance with 50 parts

C1
level C2

level C3
level C4

level C5
level C6

level C7
level C8

level C9
level C10

level

gap 8.31% 29.32% 1.77% 0.18% 2.82% 0.05% 0.42% 0.93% 17.53% 100.00%

best objective 26478.0 7521.1 3044.8 1990.0 1955.0 1816.5 1740.0 1668.2 1910.0 1500.0

Table 3.7: Energy Saving Rates

Average Energy Saving (%)

Distance Scenario

Short 18.3

Long 15.7

Mixed 20.6

Processing Times

Equal 18.3

High Variance 25.9

P1 > P2 42.4

P2 > P1 42.0

Robot Parameters

Base 18.3

cf > ce 17.6

low vup 13.4

low k 16.4

Overall 23.5
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Processing times have an important impact on energy saving. When the processing

times of a part is different on different machines (i.e. P1 > P2 or P2 > P1), we

could reach up to 42.4% energy saving. This is because different processing times

imply longer partial waiting times which lead to slower robot moves. Also, when the

processing time of a job is equal on both machines but the processing times of parts

have higher variability (Equal HV), average energy saving is higher.

There is a slight reduction in energy saving when we change the coefficient cf from

2 to 2.5. Like that, decreasing the value k from 2 to 1.5 results in less energy saving

rate. This means as the non-linearity of the energy consumption function increases,

energy saving is higher. The maximum speed of the robot is also an effective factor

in energy saving. With low maximum speed, the energy saving rate decreases. This

is again because of the shape of the energy consumption function.

44



CHAPTER 4

SCHEDULING IN A PARALLEL MACHINES ROBOTIC CELL WITH

ROBOT SPEED DECISIONS

In this chapter, we consider a robotic cell with two parallel machines and a material

handling robot. At the beginning, the parts are ready in the input buffer. Each part

is transferred from the input buffer to one of the machines. A machine can process

one part at a time. After the process finishes on a machine, the processed part is

unloaded and taken to the output buffer. The robot moves between the input buffer,

machines, and output buffers carrying the parts. The robot has three types of activ-

ity. They are loading-unloading operation, waiting, and move. Loading/unloading

operation occurs when the robot is in front of a machine or a buffer. We assume

loading-unloading activities take a constant time. The robot may wait in front of a

machine. Waiting time depends on the activity sequence of the robot, part sequence,

and processing times of the parts.

We will first consider the makespan minimization problem (Cmax problem) where the

robot moves at a constant speed i.e. at its maximum speed to minimize makespan.

If the robot speed is infinite, the problem will be a P2|pj|Cmax which is NP-hard.

So, we can say that the makespan minimization on two parallel machines with in-

put/output buffers and a material handling robot is NP-hard. In order to solve this

problem, we propose a mixed integer program (MIP). Also, for large instances where

the MIP model may not be solved within reasonable CPU times, we develop a greedy

algorithm and two simulated annealing algorithms.

Then, along with makespan objective, we will consider minimization of the energy

consumption resulting from robot moves. This second problem with two objectives

will be called E&Cmax problem. During a move between machines/buffers, the en-
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ergy consumed by the robot depends on the speed of the robot and other parameters.

We assume there is a nonlinear relation between energy consumption function and

robot speed. Increasing the robot speed decreases the makespan but also increases en-

ergy consumption. Having these two conflicting objectives, we will use ε-constraint

method to find efficient solutions. In particular, we minimize the energy consumption

function for a given bound on makespan objective. We give a mathematical model

with a nonlinear objective function and linear constraints which will be reformulated

via second-order conic inequalities. For large instances, we develop a greedy algo-

rithm and two simulated annealing algorithms.

The decision maker should prepare a schedule when the part set to be processed is

determined. Therefore, this scheduling problem is an operational level problem. Cmax

and E&Cmax problems would be solved for each different part set.

Next, we give the basic notation used throughout this chapter.

Notation:
l: index for machines

i: index for parts

r: index for robot routes

m: index for robot moves

h ∈ {e, f}: index for status of the robot, e: empty, f : full

L: set of machines, {1, 2}
R: set of robot routes

Pl,i: processing time of part i on machine l

ε: time required for loading and unloading a part on a machine

4.1 Routes of the Robot

In this scheduling environment, all parts are in the input buffer at the beginning. The

robot takes each part from the input buffer and carries it to one of the two machines,

and loads it to the machine. The robot picks up each finished part from its machine

and carries it to output buffer and loads. As parts flow from the input buffer to the out-

put buffer, the robot carries out activities which are moves between machines/buffers,
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loading/unloading machines, and waiting at machines.

In this study, we first claim that the entire schedule of the robot can be considered

as a sequence of robot routes. A robot route consists of a certain sequence of robot

activities. At the beginning of each route, the robot is ready in front of the input

buffer to unload the next part from the buffer. The robot unloads the part, takes it to a

machine, loads the machine then the robot does some other activities and goes back

to the input buffer. In each robot route, only one part is taken from the input buffer

and loaded on a machine and the route ends when the robot arrives at the input buffer

the next time. During a route, the robot may do other activities such as unloading a

machine, waiting, moving, loading output buffer. We define 12 possible robot routes

which will be described in detail. Any robot schedule for this scheduling environment

can be expressed as a sequence of robot routes.

At the beginning of each route, the machines can be in three possible states. In the first

state, both machines are empty. In the second state, machine 1 is full and machine 2

is empty. In the third state, machine 1 is empty and machine 2 is full. After executing

a robot route, the machines will be in one of these three states again. As will be

explained, the set of routes that a robot can execute at a given time depends on the state

of the machines at that time. If a machine is already loaded and running, the robot

cannot load a part on that machine, so routes which include loading that machine

cannot be executed.

We give robot activity sequences in routes in Figures 4.1, 4.2, and 4.3. We con-

sider machines are located parallel and between the buffers. We have paths that robot

moves. Il represents the path between the input buffer and machine l, Ol represents

the path between machine l and the input buffer, B represents the path between ma-

chines,D represents the path between the buffers. In these Figures, the dashed arrows

show empty moves during which the robot travels without a part on it. Continuous

arrows indicate full moves during which the robot carries a part. The activities in the

routes are given following. In the Figures, a : T hg point out moves in the routes where

a is the order of move, g is the path the robot traveled in the move, h is the status of

the robot during the move.

Route 1: In Route 1, the robot picks up a part (ε) from the input buffer, then carries
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Figure 4.1: The robot moves in routes 1, 2, 3, and 4

it to machine 1 (T fI1) and loads the part (ε), then returns to the input buffer (T eI1).

Route 2: Route 2 is similar to route 1, but the robot loads machine 2.

Route 3: In route 3, the robot picks up a part (ε) from the input buffer, then carries it

to machine 1 (T fI1) and loads the part (ε). The robot waits until the part is processed

(P1,i), then unloads the part from machine 1 (ε). After that, the robot carries the part

to the output buffer (T fO1
) loads the part (ε) to the output buffer. Finally, it returns to

the input buffer (T eD). During the execution of this route, machine 2 is empty.

Route 4: Route 4 is similar to Route 3, but this time the robot loads and unloads

machine 2.

Route 5: In route 5, the robot picks up a part (ε) from the input buffer, then transports

to machine 1 (T fI1) and loads the part (ε), then, moves to machine 2 (T eB). If the part

on machine 2 is finished, the robot unloads the part (ε), else the robot waits until the

process is finished (w2
5) and unloads the part (ε). Then, the robot transports the part

to the output buffer (T fO2
) and loads the part (ε) to the output buffer. Finally, return to

the input buffer (T eD). This route can be executed only when a part is already loaded
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Figure 4.2: The robot moves in routes 5, 6, 7, and 8

on machine 2.

Route 6: In route 6, the robot performs the same activities as in route 3 but this time

machine 2 is full during the execution of the route.

Route 7: Route 7 is similar to Route 5. The robot performs the following activities.

The robot picks up a part (ε) from the input buffer, then transports to machine 2

(T fI2) and loads the part (ε), then, moves to machine 1 (T eB). If the part is finished

on machine 1, the robot unloads the part (ε), else the robot waits until the process is

finished (w1
7) and then unloads the part (ε). Then, the robot takes the part to the output

buffer (T fO1
) and loads the part (ε) to the output buffer. Finally, the robot returns to

the input buffer (T eD).

Route 8: In route 8, the robot performs the same activities in route 4. while machine

1 is empty during route 4, machine 1 is full in this route.

Route 9: In route 9, the robot unloads a part (ε) from the input buffer, then transports

the part to machine 1 (T fI1) and loads (ε). The robot waits until the part is finished on

machine 1 (P1,i) and unloads the part (ε). After that, the robot carries the part to the
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Figure 4.3: The robot moves in routes 9, 10, 11, and 12

output buffer (T fO1
) and loads (ε) to the output buffer. The robot moves to machine 2

(T eO2
). If the part on machine 2 is finished, then the robot unloads the part (ε), else it

waits until the process is finished (w2
9) and then loads the part (ε). The robot transports

the part to the output buffer (T fO2
) and loads the part (ε) to the output buffer. Finally,

it returns to the input buffer (T eD).

Route 10: In route 10, the robot first unloads a part (ε) from the input buffer, then

transport to the machine 1 (T fI1) and loads the part (ε), then, moves to machine 2

(T eB). If the part on machine 2 is finished, then the robot unloads the part (ε), else

the robot waits until the process is finished (w2
10) and then unloads the part (ε). Then,

the robot transports the part to the output buffer (T fO2
) and loads the part (ε) to the

output buffer. After that, the robot moves to machine 1 (T eO1
). If the part is finished,

the robot unloads the part (ε), else the robot waits until the process is finished (w1
10)

and unloads the part (ε). Then, the robot transports the part to the output buffer (T fO1
),

then loads the part (ε) to the output buffer. Finally, return to the input buffer (T eD).

Route 11: Route 11 is similar to Route 9. The robot unloads a part (ε) from the input

layer, then takes the part to machine 2 (T fI1) and loads (ε). The robot waits until the
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part is processed (P2,i), then unloads the part (ε). After that, the robot carries the part

to the output buffer (T fO2
) loads the part (ε). After that, the robot moves to machine

1 (T eO1
). If the part on machine 1 is finished, the unloads the part (ε), else the robot

waits until the process is finished (w1
11) and then unloads the part (ε). Then, the robot

transports the part to the output buffer (T fO1
) and loads (ε). Finally,the robot returns

to the input buffer (T eD).

Route 12: Route 12 is similar to Route 10. The robot unloads a part (ε) from the

input buffer, then transports to machine 2 (T fI2) and loads the part (ε), then, moves to

the machine 1 (T eB). If the part on machine 1 is finished, the robot unloads the part (ε),

else the robot waits until the process is finished (w1
12) and then unloads (ε). Then, the

robot transports the part to the output buffer (T fO1
) and loads (ε). After that, the robot

moves to machine 2 (T eO2
). If the part on machine 2 is finished, the robot unloads the

part (ε), else the robot waits until the process is finished (w2
12) and then unloads (ε).

Then, the robot transports the part to the output buffer (T fO2
) and load the part (ε) to

the output buffer. Finally, it returns to the input buffer (T eD).

Proposition 1. We can express all possible robot schedules with 12 routes.

Proof. At the beginning of the schedule, the parts are in the input buffer and the robot

is in front of the input buffer. At the end of the schedule, the parts are in the output

buffer and the robot is in front of the input buffer. At the beginning of a route, the

robot is ready to load the next part in front of the input buffer and machines can be

three at three states. For each state, there are 4 possible routes which can be executed.

If machines are at state 1 (both machines are empty), the robot can load machine 1

or machine 2 (route 1 and route 2). After loading, the robot can immediately return

to input buffer or unload the part (route 3 and route 4). If machines are at state 2

(machine 1 is full, machine 2 is empty), the robot can load the part to only machine 2.

After loading, the robot can unload only machine 2 (route 8) or unload only machine

1 (route 7) or unload first machine 2 then machine 1 (route 11) or unload first machine

1 then machine 2 (route 12). If machines are at state 3, the robot can load the part

to only machine 1. After loading, the robot can unload only machine 1 (route 6) or

unload only machine 2 (route 5) or unload first machine 1 then machine 2 (route 9)

or unload first machine 2 then machine 1 (route 10).
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Beginning and ending states of the routes, and possible succeeding routes are given in

Table 4.1. Here, we can group the routes into subsets. Let R1 = {3, 4, 9, 10, 11, 12},
R2 = {1, 2, 3, 4}, R3 = {1, 5, 8}, R4 = {7, 8, 11, 12}, R5 = {2, 6, 7}, and R6 =

{5, 6, 9, 10} be route sets. The robot should use one of the R2 routes after using the

R1 routes, one of the R4 routes after using the R3 routes, and one of the R6 routes

after using the R5 routes to compose a feasible sequence of robot routes.

Table 4.1: Beginning and ending states of the routes

Beginnig State Ending State

Route Machine 1 Machine 2 Machine 1 Machine 2 Successor Routes

1 empty empty full empty 7,8,11,12

2 empty empty empty full 5,6,9,10

3 empty empty empty empty 1,2,3,4

4 empty empty empty empty 1,2,3,4

5 empty full full empty 7,8,11,12

6 empty full empty full 5,6,9,10

7 full empty empty full 5,6,9,10

8 full empty full empty 7,8,11,12

9 empty full empty empty 1,2,3,4

10 empty full empty empty 1,2,3,4

11 full empty empty empty 1,2,3,4

12 full empty empty empty 1,2,3,4

In some routes, the robot waits in front of a machine until the process on the machine

is completed. If the robot loads the machine and then waits during the process, this

is called full waiting. In the other case, if the robot loads the machine, then leaves to

perform some activities before returning to the machine and waits for the part to be

unloaded, this waiting is called partial waiting. Waiting times in full waiting are equal

to the processing time of the part processed while waiting times in partial waiting are

less than the processing time of the part processed.

The length of a full waiting in a route depends on the processing time of the part that

is being processed in that route. We have full waiting in front of machine 1 in routes
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3,6 and 9, and in front of machine 2 in routes 4,8, and 11. We define FWRl as the

set indicates routes having full waiting in front of machine l.

The partial waiting times depend on part sequence and routes used. Since the problem

involves part sequence and route sequence decisions, partial waiting times are also

decision variables. Table 4.2 shows the routes that load machines and routes unload

machines. If a loading route is used to load a machine, one of the subsequent routes

must be an unloading route that unloads the same machine. In unloading routes,

partial waitings can occur. In routes 7, 11, 12, the robot can have partial waiting at

machine 1 if the machine is loaded in the preceding route (1 or 5). In addition, in

route 10, a partial waiting can occur at machine 1 for the part that is loaded in the

same route. The robot can partially wait for the part which is put in machine 2 in

the past routes 2 or 7 in routes 5, 9, 10. The robot can partially wait in route 12 for

the part that is loaded to machine 2 in the same route 12. Let PWRl be the set that

indicates routes having partial waiting in front of the machine l. Moreover, Let Al be

the set consisting of pairs (r1, r2) where the partial waiting in front of machine l can

occur in the route r2 for the part loaded in route r1.

Table 4.2: Loading and unloading routes in partial waitings

Machine Loading routes Unloading routes

1 1, 5 7, 11, 12

2 2, 7 5, 9, 10

We introduce the following move sets, which have an effect on partial waiting times.

AM l
r1

contains the robot moves in route r1 after loading a part on machine l, BMr2
l

which contains the robot moves in route r2 before loading a part on machine l where

(r1, r2) ∈ Al. IM1
10 consists of robot moves between loading and unloading machine

1 in route 10, and IM2
12 consists of robot moves between loading and unloading

machine 2 in route 12. We also define the parameter ξlr1,r2 indicating the sum of

loading-unloading times after loading machine l in route r1 and before unloading

machine l in route r2.

In the next section, we will present Cmax problem and proposed solution approaches.
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4.2 Makespan Minimization (Cmax) Problem

We first study the makespan minimization (Cmax) problem. In Cmax problem, we

have parts to be processed. Each part has to be processed on a machine first and then

delivered to the output buffer. A solution to this problem is a part sequence and a

corresponding route sequence. The part at position k in the part sequence is loaded on

a machine by executing the kth route in the route sequence. The total time required

to have all parts processed and delivered to the output buffer is the total time of the

routes in the route sequence. As discussed before, there may occur a partial waiting

time during a robot route, so the time required to execute such a route may depend on

the activities in the route, in its processor and the corresponding parts in the sequence.

The time elapsed during a robot move depends on the speed of the robot. In Cmax

problem, we assume that the robot speeds are constant and at the maximum level. The

time elapsed in a robot move can be calculated as the distance traveled in the robot

move divided by the speed of the robot. We first give a mathematical formulation

for the makespan minimization problem. Then, we develop three algorithms to solve

large instances.

4.2.1 Mathematical Model for Cmax Problem

In this section, we develop and explain the mathematical model for Cmax problem.

First, we define indexes, sets, parameters, and decision variables used in the model.

Indexes:

t: position index in part sequence

Sets:

K: set of parts

T : set of positions

Mr: set of robot moves in route r

AM l
r: set of robot moves in route r after loading machine l

BM l
r: set of robot moves in route r before loading machine l
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IM1
10: set of robot moves between loading and unloading machine 1 in route 10

IM2
12: set of robot moves between loading and unloading machine 2 in route 12

FWRl: set of routes having full waiting in front of machine l.

PWRl: set of routes having partial waiting in front of machine l.

Al: set of route pairs (r1, r2) where partial waiting in front of machine l

can occur in the route r2 for the part loaded in route of r1.

Parameters:

Tm: time elapsed in robot move m

ξlr1,r2 : the sum of loading-unloading times after loading machine l in route r1

and before unloading machine l in route r2

dm: distance travelled by the robot during move m

ϑr: the total time required for loading-unloading operations in route r

Decision Variables

xi,r,t:

 1, if part i is started processing in robot route r at robot route position t

0, otherwise

ct: The time elapsed at position t

wlr,t: robot’s waiting time in front of machine l in route r at position t

We assume that the robot travels with its maximum speed level during all moves, the

time elapsed in move m is calculated as Tm = dm
vmax

.

min
∑
t∈T

ct (4.1)

∑
i∈K

∑
r∈R

xi,r,t = 1 ∀t ∈ T (4.2)

∑
r∈R

∑
t∈T

xi,r,t = 1 ∀i ∈ K (4.3)

∑
i∈K

∑
r∈R2

xi,r,1 = 1 (4.4)

∑
i∈K

∑
r∈R1

xi,r,N = 1 (4.5)

∑
i∈K

∑
r∈R1

xi,r,t =
∑
i∈K

∑
r∈R2

xi,r,t+1 ∀t ∈ T \ {n} (4.6)
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∑
i∈K

∑
r∈R3

xi,r,t =
∑
i∈K

∑
r∈R4

xi,r,t+1 ∀t ∈ T \ {n} (4.7)

∑
i∈K

∑
r∈R5

xi,r,t =
∑
i∈K

∑
r∈R6

xi,r,t+1 ∀t ∈ T \ {n} (4.8)

ct =
∑
i∈K

∑
r∈R

(
(ϑr +

∑
m∈Mr

Tm)xi,r,t

)
+
∑
i∈K

∑
l∈L

∑
r∈FWRl

Pl,ixi,r,t

+
∑
l∈L

∑
r∈PWRl

wlr,t ∀t ∈ T (4.9)

wlr2,t ≥
∑
j∈K

Pl,j

(∑
i∈K

xi,r2,t + xj,r1,z − 1

)

−
∑
l∈L

 ∑
m∈AM l

r1

Tm +
∑

m∈BM l
r2

Tm

− ξlr1,r2
−

t−1∑
k=z+1

ck ∀l ∈ L,∀(r1, r2) ∈ Al,∀t ∈ T \ {1, n}, z = 1, 2, .., t− 1 (4.10)

w1
10,t ≥

∑
i∈K

xi,10,t

P1,i −
∑

m∈IM1
10

Tm − 2ε

− w2
10,t ∀t ∈ T \ {1} (4.11)

w2
12,t ≥

∑
i∈K

xi12t

P2,i −
∑

m∈IM2
12

Tm − 2ε

− w1
12,t ∀t ∈ T \ {1} (4.12)

wlr,t ≤ Pmax
l

∑
i∈K

xi,r,t ∀l ∈ L,∀r ∈ PWRl,∀t ∈ T (4.13)

xi,r,t ∈ {0, 1} ∀i ∈ K, ∀r ∈ R, ∀t ∈ T (4.14)

wlr,t ≥ 0 ∀l ∈ L,∀r ∈ PWRl,∀t ∈ T (4.15)

The objective function (4.1) is the sum of the route times required to finish all parts,

i.e. all parts are processed and delivered to the output buffer and the robot is ready

at the input buffer. At each position in the schedule, a part will be unloaded from

the input buffer and delivered to a machine by one of the routes. This is ensured by

constraint (4.2). Constraints (4.3) provide that each part will be taken from the input

buffer and loaded on a machine by a selected route at a selected position. At the

beginning, we assume both machines are empty, so the route in the first position must

be in the set R2 which has routes that can be executed when both two machines are

empty. In the end, the machines should be empty so the route at the last position must

be selected from the set R1. Therefore, constraints (4.4) and (4.5) guarantee first and
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last routes are selected appropriately.

As shown in Table (4.1), each route can be succeeded by certain other routes. Con-

straints (4.6), (4.7), and (4.8) ensure that these precedence restrictions between routes

are satisfied. Required time to complete a route at a position is the sum of time

elapsed in loading-unloading operations, the times elapsed in robot moves, full and

partial waiting times. Constraint (4.9) calculates the execution time of a route at a

position.

In constraints (4.10), (4.11), and (4.12) calculate partial waiting times. With con-

straints (4.10), if part j is loaded to machine l using route r1 at position z and it is

unloaded using another route r2 at position t, the waiting time for machine l at posi-

tion t is determined as subtracting the time elapsed until the robot comes to machine

l at position t (time elapsed after loading part j at position z, time elapsed between

positions z and t, and time elapsed until unloading the part at position t) from the

processing time of part j in machine l. In route 10 (route 12), we have a waiting time

if the processing time of a part loaded to machine 1 (machine 2) is greater than the

time elapsed until returning to machine 1 (machine 2). With constraints (4.11) and

(4.12), we determine the waiting times if route 10 and route 12 are used at any posi-

tion. Because the robot performs some activities after loading a part to a machine, the

waiting time is less than the processing time of that part in that machine. So, we de-

fine upper bounds for partial waiting times for a machine as the maximum processing

time in that machine. Constraints (4.13) provide the upper bound for partial waitings.

Also, these constraints provide the partial waiting times at a position using a route for

a machine is zero if we do not use that route at that position. Constraints (4.14) and

(4.15) define the domains of the variables. The makespan minimization problem is

formulated above as a mixed-integer linear program.

4.2.2 Heuristic Algorithms for Cmax Problem

The mathematical model proposed in the previous section can be solved by using

branch and bound software such as IBM CPLEX and Gurobi. However, for large

instances, i.e. as the number of parts increases, the solvers could be insufficient to

find the optimal solution in reasonable CPU times. Therefore, to find good solutions
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quickly, we propose three algorithms, the first one is a greedy neighborhood search

(GNS), the other two algorithms are based on the Simulated Annealing metaheuristic.

First, we will describe the neighborhood structures used and define some subroutines

used in the algorithms. Then, we will give the steps of the algorithms.

Neighborhood of a Solution

We define the neighborhood of a solution by introducing four types of operations. The

first operation is called 1-PartMove. 1-PartMove changes the position of a part in the

part sequence and also changes the robot route of the part. Then, the robot route of the

part is marked as fixed. For example, consider a problem with five parts. We have part

sequence σK = (3, 1, 5, 4, 2) and route sequence σR = (2, 5, 7, 5, 12). One possible

1-PartMove operation is moving part 1 from position 2 to position 4 and changing its

route from 5 to 2. After this operation, we achieve the solution σK = (3, 5, 4, 1, 2) and

σR = (2, 7, 5, 2, 12). In addition, the route of part 1 at position 4 is marked as fixed.

We define the setMR as the set of the positions with fixed routes. Notice that the new

robot route sequence is not feasible. Therefore, we repair the route sequence without

changing the routes at positions in MR. We put all possible neighboring solutions of

a solution s using 1-PartMove operation in the set of neighborhood 1 (N1(s)).

The second operation is called 2-PartSwap. This operation swaps positions of two

parts and then changes their robot routes. Then we mark the routes of these parts as

fixed. Consider the solution s in the previous example, one of the possible 2-PartSwap

operations is swapping part 3 at position 1 and part 4 at position 4. After swapping,

let’s say we change the robot route of part 3 to 9 and the robot route for part 4 to 3.

After that, the new solution will have σK = (4, 1, 5, 3, 2) and σR = (3, 5, 7, 9, 12).

We mark the positions of part 3 and part 4 as fixed, so MR = {1, 4}. The set N2(s)

includes all possible neighboring solutions of a solution s by the second operation

type.

The third operation is called 1-RouteChange. This operation selects a part and changes

its robot route and then marks that route as fixed. We store all possible neighboring

solutions of a solution s generated by 1-RouteChange in set N3(s). The last oper-

ation is called 3-RouteChange. This operation selects three consecutive parts and

changes their robot routes. While doing this, it ensures that the new three consecutive
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routes are compatible with each other. The set N4(s) stores all possible neighboring

solutions of a solution s applying 3-RouteChange.

In all operations, when changing the routes at the first and the last positions, routes in

sets R2 and R1 are used, respectively. The solutions we define in the neighborhoods

consist of a part sequence (σK), a route sequence (σR), and a set that contains the

positions of fixed routes (MR). In addition, we combine all neighbor solutions into

a single N(s) set. A solution contains a part sequence σK and a route sequence σR

s = (σK , σR).

Makespan Calculation Algorithm (MCA)

A solution to Cmax problem can be represented as a sequence of parts (σK) and a

sequence of routes (σR). MCA takes σK and σR as input and returns the completion

time of the last part (makespan). We give the steps of MCA in Algorithm 1.

Makespan is the sum of loading-unloading times, the times elapsed in the robot

moves, times of full waitings, and times of partial waitings. The sequence of these

activities is known by the given route sequence. Here, loading-unloading times are

parameters, the time elapsed in the robot moves are calculated easily by dm
vmax

, and

time of full waiting in a route is the processing time of the part which is loaded on

a machine in that route. Partial waiting times must be carefully calculated. After

loading a part on a machine, the robot may leave the machine and carry out some

other activities. When the robot is back for unloading the part, if the process has not

finished yet, it has to wait. This waiting time is the difference between the processing

time of the part and the total duration of robot activities between its departure from

the machine and its arrival to the machine. If the difference is greater than or equal

to 0, the partial waiting time is the remaining processing time on the machine; other-

wise, the partial waiting time is 0 and the robot unloads the part as soon as it arrives

at the machine.

Algorithm 1 gives the steps of MCA. MCA first generates robot activity sequence in

order of occurrence in line 3. It contains loading-unloading operations and the robot

moves. Then, we initialize the variables. makespan is used to calculate makespan.

Rl is used to store the remaining time of the process on machine l. Then, in for loop

(lines 5-14), we update the variables according to loading and unloading activities
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on the machines. The function Time(A) return the activity times. If the activity

is a loading or unloading operation, it returns the parameter ε. If the activity is a

robot move, it returns the time elapsed in the move when the speed of the robot is at

maximum level.

Algorithm 1 Makespan Calculation Algorithm (MCA)

1: Input: a solution s = (σK , σR)

2: Output: makespan of the given solution s

3: Create the activity sequence (AS) of the solution s

4: makespan← 0 , R1 ← 0, R2 ← 0

5: for activity A ∈ AS do

6: makespan← (makespan+ Time(A))

7: if part i is loaded to machine l at the end of A then

8: Rl ← Pl,i

9: else if machine l is unloaded at the end of A then

10: makespan← (makespan+max{0, Rl}), Rl ← 0

11: else

12: R1 ← (R1 − Time(A)), R2 ← (R2 − Time(A))

13: end if

14: end for

15: return makespan

As discussed before, each route can succeed certain other routes and can be succeeded

by certain routes. When the aforementioned operations are applied to a solution to

achieve a neighbor solution, these restrictions may be violated. In such a case, we

need to repair the solution as explained below.

Sequence Repairing Algorithm (SRA)

SRA is a heuristic algorithm that repairs route precedence constraints in a given so-

lution. SRA outputs a part sequence and a feasible route sequence. We give the steps

of SRA in Algorithm 2.

SRA takes a solution consisting of a part sequence (σK) and a route sequence (σR),

and a set that contains positions of fixed routes (MR). We first initialize an empty set

CR and initialize makespan value to infinity. CR, stores the positions of the routes
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that will be changed to achieve a feasible route sequence. Between lines 4-13, SRA

determines the routes which will be changed. Here, SRA first determines the routes

that are not fixed routes and cannot succeed fixed routes and determines the routes

that cannot follow the fixed routes. After that, if CR is empty, it means the route

sequence is feasible and the SRA returns the current solution (lines 14-17). If CR is

not empty, SRA creates a set of feasible route sequences by changing the routes in

CR. In line 19, we define the set PR and add the route sequence of the input solution

to it.

Note that for any given two routes, we can find one or two suitable routes positioning

between these two routes (see Table 4.1). Therefore, if we change a route, possibly

one route or two routes can be replaced with that route. For example, consider a route

sequence (1,7,r,9,4,3,2,r′,1,12) that contains 10 routes. Here, r can be only 6 and r′

can be 9 and 10. So, at the end, we get two possible feasible route sequences that are

(1,7,6,9,4,3,2,9,1,12), (1,7,6,9,4,3,2,10,1,12). In this way, in lines 20-26, we find all

possible feasible route sequences by changing the routes in CR and add them to the

set PR. After determining all possible feasible route sequences, we select one route

sequence that has minimum makespan among these feasible route sequences in the

lines 27-32. In the end, SRA returns a feasible solution (σK , a feasible route sequence

found (σfinalR )) and makespan of that solution.

Algorithm 2 Sequence Repairing Algorithm (SRA)

1: Input: a solution s = (σK , σR), set of fixed routes (MR)

2: Output: Repaired solution, makespan of the repaired solution

3: CR← ∅,makespanfinal ←∞, n← Numberofpart

4: for i = 2 to n do

5: if σK(i− 1) cannot succeed σK(i) and σK(i) /∈MR then

6: add i to CR

7: end if

8: end for

9: for j ∈MR do

10: if σK(j) cannot succeed σK(j + 1) then

11: add j + 1 to CR

12: end if
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13: end for

14: if CR = ∅ then

15: makespanfinal ←MCA(σK , σR)

16: s = (σK , σR)

17: return makespanfinal, s

18: else

19: PR← ∅, add σR to PR

20: for j ∈ CR do

21: for σ′R ∈ PR do

22: Create two (one) route sequences σ1
R, σ

2
R (σ1

R) by changing σ′R(j)

23: Add σ1
R, σ

2
R (σ1

R) to PR

24: Remove σ′R from PR

25: end for

26: end for

27: for σpR ∈ PR do

28: if makespanfinal > MCA(σK , σ
′
R) then

29: makespanfinal ←MCA(σK , σ
p
R)

30: σfinalR ← σpR

31: end if

32: end for

33: end if

34: s = (σK , σ
final
R )

35: return s, makespanfinal

4.2.2.1 Greedy Neighborhood Search Algorithm (GNS)

GNS is a neighborhood search approach which attempts to find an improved solution

at each iteration. The algorithm generates neighbor solutions at each iteration moves

to a better neighbor solution. As can be seen in Figure 4.4, we first generate an arbi-

trary initial solution and generate the neighborhood of the solution. Then, we select

a random solution from the neighborhood and apply repairing procedure. If, the se-

lected solution is better, we accept it and continue with creating the neighborhood of

the accepted solution. If the selected solution is worse, we remove it from the neigh-
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Figure 4.4: GNS Algorithm
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borhood. We continue with selecting another solution from the neighborhood unless

the neighborhood is empty. If neighborhood is empty, the algorithm terminates. We

give the pseudo-code of GNS in Algorithm 3.

In GNS, s0 indicates the current solution. In lines 2-3, GNS generates an arbitrary

initial solution (initial s0). Then, MCA calculates the makespan value of s0. In lines

5-15, GNS selects a random neighbor solution and repairs it with SRA. If the se-

lected solution is better than the current solution, GNS moves to the new solution and

creates its neighborhood, else the solution is removed from the neighborhood. The

algorithm terminates if the neighborhood is empty, so there is no better solution in

the neighborhood. In the end, the algorithm returns the best solution found so far s0.

Algorithm 3 GNS Algorithm
1: Output: The solution found, makespan of the solution found

2: Create an initial solution s0 = (σK , σR) arbitrarily

3: makespanfinal ←MCA(σK , σR)

4: Create the neighborhood of s0 (N(s0))

5: while N(s0) is not empty do

6: Select a random solution s′ from N(s0)

7: (makespan′, s)← SRA(s′,MR)

63



8: if makespanfinal > makespan′ then

9: makespanfinal ← makespan′

10: s0 ← s

11: Create N(s0)

12: else

13: Remove the solution s from N(s0)

14: end if

15: end while

16: return makespanfinal, s0

4.2.2.2 Simulated Annealing based Algorithms

Simulated Annealing is a metaheuristic algorithm inspired by a method of increasing

the size of a material’s crystals and reducing defects by heating and cooling it in a

controlled way. Pincus (1970), Khachaturyan et al. (1981), and Černý (1985) have

all independently introduced similar techniques. Kirkpatrick et al. (1983) used this

approach to solve the traveling salesman problem in 1983.

Many local optimal points can be found in a solution space of an optimization prob-

lem. The GNS algorithm selects a random initial solution and generates the neigh-

borhood. If a randomly selected neighbor solution has a smaller makespan than the

current solution, then it is accepted. The disadvantage of this algorithm is that it prob-

ably converges to a local optimal point so we do not explore the solution space and

the final solution is highly dependent on the initial solution.

Simulated Annealing is an algorithm based on local search, it tries to avoid getting

stuck at a local optimal solution as it can move to a worse solution with a certain

probability. Algorithmic parameters in Simulated Annealing such as the number of

iterations, initial temperature, and cooling rate affect the performance of the algo-

rithm.

Simulated Annealing starts with an initial temperature (t0) and in each iteration the

temperature is decreased. Temperature is multiplied by a constant (α), which has a

value between 0 and 1. We propose two Simulated Annealing based algorithms for
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Figure 4.5: SA-I Algorithm
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Cmax problem. The first one, SA-I, creates the neighborhood of a solution by using all

operations at the same time. The second algorithm SA-II generates the neighborhood

of a solution by using one operation at a time.

In SA-I, different than the GNS algorithm, we can accept an inferior solution with a

certain probability as shown in Figure 4.5. That probability value decreases as the iter-

ation number increases. When we reach a certain number of iterations, the algorithm

terminates and returns the best solution found so far. Also, when the neighborhood is

empty, the algorithm terminates. We give the steps of SA-I in detail in Algorithm 4.

SA-I first creates an initial arbitrary solution (so). sfinal stores the best solution found

so far. makespanfinal denotes its makespan level and it is updated as better solutions

are found. sfinal is initialized to so in line 2. s0 is the current solution withmakespan

value. In the next line, the makespan of the initial solution is calculated using MCA.

In line 4, temperature (t) is initialized, iteration number i is initialized to 1, and SA-I

generates the neighborhood of so. Then, in lines 6-18, a random solution (s′) is se-

lected from the neighborhood and repaired (s). If makespan of s is smaller than the
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makespan of s0, then s0 ← s. Iteration number i is incremented and temperature t

is updated. If s is not a better solution than s0, then function GenerateRandom()

generates a random number between 0 and 1. If the randomly generated number is

less than e−
(makespan′−makespan)

t , s0 ← s. i and t are updated. Here, t is the current tem-

perature so the probability of accepting a worse solution is decreasing as the iteration

number increase. Otherwise, the selected solution is removed from the neighborhood.

In lines 19-22, we check whether the current solution is better than the best solution

found so far sfinal or not. If so, we update the sfinal as the current solution.

Next, in the line 24-41, we go to the local minimum solution if the neighborhood is

not empty. SA-I continues this process until reaching the number of iterations limit

or the neighborhood has no solution.

Algorithm 4 SA-I

1: Output: Makespan, sfinal

2: Create an initial solution s0 = (σK , σR) randomly, sfinal ← s0

3: Create N(s0), i← 1, t← t0

4: Call MCA to calculate makespan, makespanfinal ← makespan

5: while i < NumIteration and N(s0) is not empty do

6: Select a solution s′ from N(s0) randomly

7: (makespan′, s)← SRA(s′,MR)

8: if makespan′ −makespan < 0 then

9: makespan← makespan′

10: s0 ← s

11: Create N(s0), t← tα, i← i+ 1

12: else if GenerateRandom() < e−
(makespan′−makespan)

t then

13: makespan← makespan′

14: s0 ← s

15: Create N(s0), t← tα, i← i+ 1

16: else

17: Remove the solution s from N(s0)

18: end if

19: if makespan < makespanfinal then

20: makespanfinal ← makespan
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21: sfinal ← s0

22: end if

23: end while

24: if N(s0) is not empty then

25: Recreate N(s0)

26: while N(s0) is not empty do

27: Select a solution s′ from N(s0) randomly

28: (makespan′, s)← SRA(s′,MR)

29: if makespan′ −makespan < 0 then

30: makespan← makespan′

31: s0 ← s

32: Create N(s0)

33: else

34: Remove the solution s from N(s0)

35: end if

36: if makespan < makespanfinal then

37: makespanfinal ← makespan

38: sfinal ← s0

39: end if

40: end while

41: end if

42: return makespanfinal, sfinal

In SA-I, when generating the neighborhood of a solution all operations (1-PartMove,

2-PartSwap, 1-RouteChange and 3-RouteChange) are used. In SA-II, different than

SA-I, these operations are used sequentially, i.e. neighbor solutions are generated by

using only one type of operation. As the algorithm switches from one operation to

another, temperature (t) and iteration number (i) values are restarted. We give the

steps of the SA-II in Algorithm 5.

Algorithm 5 SA-II

1: Output: Makespan, sfinal

2: Create an initial solution s0 = (σK , σR) randomly, sfinal ← s0

3: Create N(s0), i← 1, t← t0
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4: makespan←MCA(σK , σR), makespanfinal ← makespan

5: for j = 1 to 4 do

6: create Nj(s0), i← 1, t← t0

7: while i < NumIteration and Nj(s0) is not empty do

8: Select a solution s′ from Nj(s0) randomly

9: (makespan′, s)← SRA(s′,MR)

10: if makespan′ −makespan < 0 then

11: makespan← makespan′

12: s0 ← s

13: Create Nj(s0), t← tα, i← i+ 1

14: else if GenerateRandom() < e−
(makespan′−makespan)

t then

15: makespan← makespan′

16: s0 ← s

17: Create Nj(s0), t← tα, i← i+ 1

18: else

19: Remove the solution s from Nj(s0)

20: end if

21: if makespan < makespanfinal then

22: makespanfinal ← makespan

23: sfinal ← s0

24: end if

25: end while

26: if Nj(s0) is not empty then

27: Recreate Nj(s0)

28: while Nj(s0) is not empty do

29: Select a solution s′ from Nj(s0) randomly

30: (makespan′, s)← SRA(s′,MR)

31: if makespan′ −makespan < 0 then

32: makespan← makespan′

33: s0 ← s

34: Create Nj(s0)

35: else

36: Remove the solution s from Nj(s0)
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37: end if

38: if makespan < makespanfinal then

39: makespanfinal ← makespan

40: sfinal ← s0

41: end if

42: end while

43: end if

44: end for

45: return makespanfinal, s0

In this section, we have presented the Cmax problem. We define the problem using

robot routes and developed a mathematical formulation of the problem. Also, pro-

posed three heuristic approaches: GNS, SA-I, and SA-II. The computational study

on these solution methods will be presented Section 4.4. In the next section, we will

consider robot speed controllability and robot energy consumption objective along

with the makespan objective in the same scheduling environment.

4.3 Energy and Makespan Minimization (E&Cmax) Problem

In Section 4.2, we investigated two parallel machines scheduling problems with a

single material handling robot to minimize makespan where robot speed is given and

fixed. In this section, we consider that the robot speed is controllable, i.e. the robot’s

speed (move time) during a move between machines/buffers is a decision variable.

If the robot moves at a higher speed (i.e. spends less time to move from one loca-

tion to another), then it consumes more energy. For a feasible part (route) sequence,

the makespan objective can be improved by speeding up the robot albeit consum-

ing more energy. Similar to other studies in the literature, for a robot move between

two locations we assume a nonlinear relationship between move time (speed) and en-

ergy consumption. In Section 3.1.2, we describe the energy consumption function.

Makespan minimization and energy minimization are conflicting objectives. There-

fore, the problem is to find efficient solutions for makespan and energy consumption

objectives.
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For this bicriteria scheduling problem we will first give a mathematical formulation

in Section 4.3.1. We will use the ε-constraint approach to obtain a single objective

mathematical model that finds efficient solutions. We will reformulate the mathemat-

ical model as a MISOCP (Mixed-integer second-order conic programming). After

that, we proposed three heuristic algorithms to find efficient solutions.

In the problem, energy consumption is depending on the robot speed, distance trav-

eled, and robot features as shown in equation 3.6. Therefore, the energy consumption

function is the same as in Section 3.1.2.

In the next section, we propose a mathematical formulation of the problem.

4.3.1 Mathematical Model for E&Cmax Problem

There are two objective functions in the problem: Makespan and robot energy con-

sumption. The problem is to find robot route sequence, part sequence, and robot

move times such that both the energy consumption of the robot and the makespan

of the schedule are minimized. We have additional decision variables δi,r,t,m that in-

dicate the time elapsed during the robot move m in route r which loads part i for

processing at position t in the part (route) sequence.

min
∑
i∈K

∑
r∈R

∑
t∈T

 ∑
m∈Me

r

ce
dk+1
m

δki,r,t,m
+
∑
m∈Mf

r

cf
dk+1
m

δki,r,t,m

 (4.16)

min
∑
t∈T

ct (4.17)

s.t.constraints (4.2)− (4.8)

ct =
∑
i∈K

(∑
r∈R

∑
m∈Mr

δi,r,t,m +
2∑
r=1

2 ε xi,r,t +
8∑
r=3

4 ε xi,r,t

+
12∑
r=9

6 ε xi,r,t +
∑
l∈{1,2}

∑
r∈FWRl

Pl,ixi,r,t

)

+
∑
l∈{1,2}

∑
r∈PWRl

wlr,t ∀t ∈ T (4.18)
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wlr2,t ≥
∑
j∈K

(
Pl,j

(∑
i∈K

(xi,r2,t + xj,r1,z − 1)

))
− ξlr1,r2

−
∑
l∈{1,2}

 ∑
m∈AM l

r1

δi,r1,z +
∑

m∈BM l
r2

δi,r2,t,m


−

t−1∑
k=z+1

ck ∀l ∈ {1, 2},∀(r1, r2) ∈ Al,∀t ∈ T \ {1, n}, z = 1, 2, .., t− 1

(4.19)

w1
10,t ≥

∑
i∈K

xi,10,t

P1,i − 2ε−
∑

m∈IM1
10

δi,10,t

− w1
10,t ∀t ∈ T \ {1} (4.20)

w2
12,t ≥

∑
i∈K

xi,12,t

P2,i − 2ε−
∑

m∈IM2
12

δi,12,t

− w2
12,t ∀t ∈ T \ {1} (4.21)

δi,r,t,m ≤
dm
vmin

xi,r,t ∀i ∈ K, r ∈ R, t ∈ T,m ∈Mr (4.22)

δi,r,t,m ≥
dm
vmax

xi,r,t ∀i ∈ K, r ∈ R, t ∈ T,m ∈Mr (4.23)

xi,r,t ∈ {0, 1} ∀i ∈ K, ∀r ∈ R, ∀t ∈ T (4.24)

wlr,t ≥ 0 ∀l ∈ {1, 2},∀r ∈ PWRl,∀t ∈ T (4.25)

δi,r,t,m ≥ 0 ∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.26)

The objective function (4.16) is the total energy consumption of the robot moves in

a solution. The second objective function (4.17) to minimize is the makespan of

the schedule. The assignment and sequencing constraints (4.2) - (4.8) are borrowed

from the makespan minimization model given in Section 4.2.1. The time required to

complete a robot route in a position is the sum of the robot moves times, loading-

unloading times, full and partial waiting times in the route. This time is calculated by

constraint (4.18). Constraints (4.19)-(4.21) give the waiting time of the robot before

unloading a part from a machine. Constraints (4.22) and (4.23) ensure that the robot

move time is between its lower and upper bounds. Constraints (4.24),(4.25) and (4.26)

define the domains of the decision variables.

Decreasing the move time of the robot may decrease the makespan of the schedule

but increases energy consumption. Therefore, makespan and energy consumption

are conflicting objectives. The problem is to find efficient solutions for the problem.
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We use the ε-constraint approach and find efficient solutions by solving energy con-

sumption minimization problem subject to an upper bound (C̄max) on makespan. The

resulting single objective problem is given below:

min
∑
i∈K

∑
r∈R

∑
t∈T

 ∑
m∈Me

r

ce
dk+1
m

δki,r,t,m
+
∑
m∈Mf

r

cf
dk+1
m

δki,r,t,m

+ ε

(∑
t∈T

ct

)

s.t.
∑
t∈T

ct ≤ C̄max (4.27)

constraints (4.2)− (4.8) and (4.18)− (4.26)

The model above is a mixed-integer nonlinear programming problem. The energy

consumption function in the objective includes nonlinear, convex terms. In the next

section, we give a second-order conic representation of the model, so that the prob-

lem can be solved using branch-and-bound software that can solve conic quadratic

subproblems.

4.3.2 Second-Order Conic Programming Reformulation

In Section 3.2.1, we give the SOCP reformulations for k = 2 and k = 1.5 for the

problem of two machine flow shop environments. Because we have a similar objec-

tive function in E&Cmax problem, the same steps are used to reformulate E&Cmax

problem as MISOCP.

MISOCP Formulation for k = 2

min
∑
i∈K

∑
r∈R

∑
t∈T

 ∑
m∈Me

r

ce · d3m · τi,r,t,m +
∑
m∈Mf

r

cf · d3m · τi,r,t,m


+ ε

(∑
t∈T

ct

)
(4.28)

s.t. constraints (4.2)− (4.8) and (4.18)− (4.27)

4(ωi,r,t,m)2 + (τi,r,t,m − xi,r,t)2 ≤ (τi,r,t,m + xi,r,t)
2

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.29)

4(xi,r,t)
2 + (ωi,r,t,m − δi,r,t,m)2 ≤ (ωi,r,t,m + δi,r,t,m)2
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∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.30)

τi,r,t,m, ωi,r,t,m ≥ 0

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.31)

MISOCP Formulation for k = 1.5

min
∑
i∈K

∑
r∈R

∑
t∈T

 ∑
m∈Me

r

ce · d3m · τi,r,t,m +
∑
m∈Mf

r

cf · d3m · τi,r,t,m


+ ε

(∑
t∈T

ct

)
(4.32)

s.t. constraints (4.2)− (4.8) and (4.18)− (4.27)

4(ω1,i,r,t,m)2 + (δi,r,t,m − 1)2 ≤ (δi,r,t,m + 1)2

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.33)

4(ω2,i,r,t,m)2 + (ω1,i,r,t,m − 1)2 ≤ (ω1,i,r,t,m + 1)2

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.34)

4(ω3,i,r,t,m)2 + (τi,r,t,m − δi,r,t,m)2 ≤ (τi,r,t,m + δi,r,t,m)2

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.35)

4(xi,r,t)
2 + (ω2,i,r,t,m − ω3,i,r,t,m)2 ≤ (ω2,i,r,t,m − ω3,i,r,t,m)2

∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.36)

τi,r,t,m, ωi,r,t,m ≥ 0 ∀i ∈ K, ∀r ∈ R, ∀m ∈Mr,∀t ∈ T (4.37)

CPLEX, Gurobi, and other solvers can be used to solve the developed MISOCPs in

the previous section. However, as the number of parts increase, solving MISOCP

models may require excessively long CPU times. In the next section, we propose

heuristic solution methods for the problem.

4.3.3 Heuristic Algorithms for E&Cmax Problem

In Section 4.2.2 we have proposed three heuristic search algorithms GNS, SA-I, and

SA-II for the Cmax problem. In E&Cmax problem, we have two objective functions
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to minimize and robot move time decisions to be made in addition to part and robot

route sequencing decisions in Cmax problem. In this section, we will use the same

solution neighborhood definition as described in Section 4.2.2 and adapt GNS, SA-I,

and SA-II algorithms to E&Cmax problem.

The aim of the heuristic algorithms for E&Cmax problem will be finding an efficient

solution for the problem. Each algorithm will try to find a solution with minimum

energy consumption for a given makespan upper bound. In E&Cmax problem, we

have three groups of decisions: part sequencing, route sequencing, robot move time.

In the algorithms, alternative part and route sequences will be explored by using the

solution neighborhoods generated by 1-PartMove, 2-PartSwap, 1-RouteChange, and

3-RouteChange operations which were defined before. When a new part and route

sequence is achieved by these operations, we have to make the optimal robot move

time decisions so that the energy consumption of the schedule is minimized and the

makespan of the schedule is not higher than a given upper bound. For making speed

optimization decisions we propose an algorithm called Speed Optimization Algo-

rithm (SOA). The details of the algorithm will be discussed later in this section.

In Section 4.2.2, we have given SRA algorithm which repairs infeasible robot route

sequences achieved by the neighborhood search operations. For the E&Cmax prob-

lem, we have revised SRA such that it also makes the robot move time decisions by

calling SOA.

As discussed in Section 4.2.2, the makespan value of a schedule has to be calculated

carefully for which the MCA was used. The MCA was using fixed robot move time

values. In the heuristic algorithms developed for E&Cmax problem, we will use the

MCA but the MCA will use the robot move times determined by the SOA. In the next

section, we will describe SOA.

Speed Optimization Algorithm (SOA)

A solution to E&Cmax problem can be represented as a sequence of parts, a sequence

of robot routes , and move times for all robot moves. A sequence of robot routes can

be considered as a sequence of robot activities. Some of those activities are robot

moves between machines/buffers. Indeed, these robot moves can be considered as a

sequence of moves. Letm denote the position of a move in the sequence of moves. In
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this section, we call a move in position m as move m briefly. Tm be the time elapsed

during the robot move m. Tminm is the shortest possible time for move m i.e. when

the robot moves at its maximum speed. Tmaxm is the longest possible time for move m

i.e. when the robot moves at its minimum speed. Tminm and Tmaxm depend on the type

of the move. hm is the status of the robot (empty or full) during the move and dm is

the distance traveled by the robot in move m. Moves denotes the set of m in a given

robot route sequence. Given a schedule set Moves can be easily found.

SOA determines the robot move times for all robot moves in a given schedule. The

inputs of SOA are a part sequence (σK), a route sequence (σR) and an upper bound

on makespan (C̄max). Given σR, SOA first generates all robot moves in set Moves.

Then, Tm for each robot move m in Moves is initialized to Tminm . Makespan value

(Cmax) of the initial schedule is calculated (line 5). In each iteration of SOA, the

algorithm chooses a robot move m and increases its move time by a constant value

(∆). The robot move is chosen using a greedy approach. When the move time of

a robot move is increased, the energy consumption of the move will decrease and

possibly the makespan of the schedule will increase. Therefore, we want to choose

the robot move which will give the highest energy saving per unit time increase in

the makespan objective. However, trying all robot moves one by one and finding the

changes in makespan and energy consumption takes too much time. Instead, for each

robot move, we calculate the derivative of the energy consumption function (3.7) with

respect to time (4.38) at its current move time, and then we choose the robot move

which has the smallest derivative value.

∂EC(m)

∂Tm
= −k · chm · dk+1

m · T−k−1m (4.38)

After increasing the move time for the selected move (line 14), SOA calculates the

makespan of the new schedule. If the makespan does not exceed the given bound,

SOA moves to the next iteration. If the makespan exceeds the upper bound (line 17),

then the last Tm value is adjusted, so that the makespan bound is not violated. The

steps of SOA are given in Algorithm 6.

Algorithm 6 Speed Optimization Algorithm (SOA)

1: Input: σK , σR, C̄max

2: Output: Tm values and total energy consumption
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3: Initialize: Moves← {all robot moves in the robot route sequence}.

4: Initialize: Tm ← Tminm for all m ∈Moves

5: Call MCA to calculate Cmax

6: if Cmax > C̄max then

7: return No solution exist

8: else

9: while Moves is not empty do

10: Choose m ∈Moves which has the minimum derivative value (4.38).

11: if Tm = Tmaxm then

12: remove m from Moves and go to line 9

13: else

14: Tm ← Tm + min{∆, Tmaxm − Tm}
15: Call MCA to calculate Cmax

16: end if

17: if Cmax > C̄max then

18: Tm ← Tm − (C̄max − Cmax)

19: remove move m from Moves

20: end if

21: end while

22: return Tm for all moves and total energy consumption of the solution.

23: end if

Sequence Repairing Algorithm (SRAE)

As mentioned in Section 4.2.2, the robot route sequence generated by neighborhood

operators can be infeasible. SRA was developed to repair such route sequences for

Cmax problem. A similar route sequence repair algorithm is required within the

heuristic algorithms developed for E&Cmax problem. So, we develop SRAE and give

its detail in algorithm 7. Like in the SRA, we first determine the routes that will be

changed (CR). By changing these routes, we create a set PR consisting of feasible

route sequences. If PR is empty, that means the given solution is feasible. In this

case, we call SOA to make move time decisions for a given makespan (C̄max) and get

the total energy consumption in the line 15. In SRAE , different from SRA, we try

to find a feasible route sequence that gives minimum energy consumption for a given
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makespan (C̄max). Therefore, in SRAE , we call SOA for all feasible route sequences

in PR and keep the route sequence with minimum energy consumption between lines

27-33. SRAE returns the solution kept and the value of energy consumption for this

solution.

Algorithm 7 Sequence Repairing Algorithm (SRAE)

1: Input: A solution s = (σK , σR), set of fixed routes (MR)

2: Output: Repaired solution, energy consumption of the repaired solution

3: CR← ∅, energyfinal ←∞, n← Numberofpart

4: for i = 2 to n do

5: if σK(i− 1) cannot succeed σK(i) and σK(i) /∈MR then

6: add i to CR

7: end if

8: end for

9: for j ∈MR do

10: if σK(j) cannot succeed σK(j + 1) then

11: add j + 1 to CR

12: end if

13: end for

14: if CR = ∅ then

15: energyfinal ← SOA(σK , σR, C̄max)

16: s = (σK , σR)

17: return energyfinal, s

18: else

19: PR← ∅, add σR to PR

20: for j ∈ CR do

21: for σ′R ∈ PR do

22: Create two (one) route sequences σ1
R, σ

2
R (σ1

R) by changing σ′R(j)

23: Add σ1
R, σ

2
R (σ1

R) to PR

24: Remove σ′R from PR

25: end for

26: end for

27: for σpR ∈ PR do
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28: energy′ ← SOA(σK , σ
′
R, C̄max)

29: if energyfinal > energy′ then

30: energyfinal ← energy′

31: σfinalR ← σpR

32: end if

33: end for

34: end if

35: s = (σK , σ
final
R )

36: return energyfinal, s

4.3.3.1 Greedy Neighborhood Search Algorithm (GNSE)

GNSE uses similar logic as GNS. Its steps are given in Algorithm 8. We start with

an initial solution. The makespan of the initial solution when robot speeds are at the

maximum level should be less than or equal to the given makespan (C̄max). In line 3,

we call SOA to determine move times for C̄max and get the energy consumption of

the initial solution. Then, GNSE searches the neighborhood of the current solution

and if finds a better solution, then that solution becomes the current solution. The

selected neighbor solutions are repaired by calling SRAE in line 7. In the next line,

we check whether the repaired solution is better than the current solution or not. If

better, we replace the current solution with it between lines 9-11. Else, we remove

it from the neighborhood and continue with another randomly selected solution. The

algorithm terminates when no better solution is found in the neighborhood of the cur-

rent solution. GNSE aims to find a solution with minimum energy consumption and

with a makespan value not exceeding a given bound. So, when evaluating a neighbor

solution, GNSE uses SOA to optimize robot move times when calling SRAE .

Algorithm 8 The Greedy Neighborhood Search Algorithm GNSE

1: Input: An initial solution (s0)

2: Output: The solution found, energy consumption of the solution found

3: energyfinal ← SOA(σK , σR, C̄max)

4: Create the neighborhood of s0 (N(s0))

5: while N(s0) is not empty do
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6: Select a random solution s′ from N(s0)

7: (energy′, s)← SRAE(s′,MR)

8: if energyfinal > energy′ then

9: energyfinal ← energy′

10: s0 ← s

11: Create N(s0)

12: else

13: Remove the solution s from N(s0)

14: end if

15: end while

16: return energyfinal, s0

Simulated Annealing Based Algorithms

In this section, we propose two SA algorithms with combined and sequential neigh-

borhoods, as we did in Cmax problem. The first SA (SA-IE) algorithm uses the com-

bined neighborhood. SA parameters (initial temperature, number of iterations, the

value of α) and an initial solution are inputs of SA-IE . Like in GNSE , when robot

speeds are at the maximum level in all moves, the makespan of that initial solution

should be less than or equal to the given makespan (C̄max). The logic behind SA-IE is

the same as SA-I. While we consider the makespan minimization objective in SA-I,

the objective of SA-IE is the minimization of energy consumption. So, we use SOA

to make robot speed decisions in the moves while calling SRAE . The steps of SA-IE

are given in algorithm 9. Between the line 4 and line 22, we search the solutions al-

lowing acceptance of a worse solution than the current solution. After that, we reach

a local minimum solution.

Algorithm 9 SA-IE

1: Input: An initial solution (s0)

2: Output: Energy consumption value, best found solution

3: Create N(s0), i← 1, t← t0, energyfinal ← SOA(σK , σR, C̄max)

4: while i < NumIteration and N(s0) is not empty do

5: Select a solution s′ from N(s0) randomly

6: (energy′, s)← SRAE(s′,MR)

7: if energy′ − energy < 0 then
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8: energy ← energy′

9: s0 ← s

10: Create N(s0), t← tα, i← i+ 1

11: else if GenerateRandom() < e−
δ
t then

12: energy ← energy′

13: s0 ← s

14: Create N(s0), t← tα, i← i+ 1

15: else

16: Remove the solution s from N(s0)

17: end if

18: if energy < energyfinal then

19: energyfinal ← energy

20: sfinal ← s0

21: end if

22: end while

23: if N(s0) is not empty then

24: Recreate N(s0)

25: while N(s0) is not empty do

26: Select a solution s′ from N(s0) randomly

27: (energy′, s)← SRAE(s′,MR)

28: if energy′ − energy < 0 then

29: energy ← energy′

30: s0 ← s

31: Create N(s0)

32: else

33: Remove the solution s from N(s0)

34: end if

35: if energy < energyfinal then

36: energyfinal ← energy

37: sfinal ← s0

38: end if

39: end while

40: end if

80



41: return energyfinal, s0

The second SA (SAIIE) algorithm sequentially uses four different types of neighbor-

hood structures. We begin with an initial solution that has greater makespan than the

given makespan (C̄max) when speeds of the robot are at the maximum in all moves. In

each neighborhood type, we search the neighborhood accepting worse solutions with

a probability that reduces as the iteration number increases. When the limit on the

number of iterations is reached, we go to the local minimum solution at the current

neighborhood type. Algorithm 10 has the steps of the SA algorithm with sequential

neighborhood structure for the energy minimization problem.

Algorithm 10 SA-IIE

1: Input: An initial solution (s0)

2: Output: Energy consumption value, best found solution

3: energyfinal ← SOA(σK , σR, C̄max)

4: for j = 1 to 4 do

5: create Nj(s0), i← 1, t← t0

6: while i < NumIteration and Nj(s0) is not empty do

7: Select a solution s from Nj(s0) randomly

8: (energy′, s)← SRAE(s′,MR)

9: if energy′ − energy < 0 then

10: energy ← energy′

11: s0 ← s

12: Create Nj(s0), t← tα, i← i+ 1

13: else if GenerateRandom() < e−
δ
t then

14: energy ← energy′

15: s0 ← s

16: Create Nj(s0), t← tα, i← i+ 1

17: else

18: Remove the solution s from Nj(s0)

19: end if

20: if energy < energyfinal then

21: energyfinal ← energy

22: sfinal ← s0
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23: end if

24: end while

25: if Nj(s0) is not empty then

26: Recreate Nj(s0)

27: while Nj(s0) is not empty do

28: Select a solution s from Nj(s0) randomly

29: (energy′, s)← SRAE(s′,MR)

30: if energy′ − energy < 0 then

31: energy ← energy′

32: s0 ← s

33: Create Nj(s0)

34: else

35: Remove solution s from Nj(s0)

36: end if

37: if energy < energyfinal then

38: energyfinal ← energy

39: sfinal ← s0

40: end if

41: end while

42: end if

43: end for

44: return energyfinal, s0

4.4 Computational Results

In this section, we present computational results for Cmax and E&Cmax problems.

We test the performance of mathematical models and the algorithms proposed in this

chapter. We give a numerical study on the efficient frontier for energy consumption

and cycle time objectives. We test the computational performance of mathematical

models and algorithms under different parameter settings. Finally, we show the ben-

efit of the robot speed control for the parallel machine robotic cell environment.
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4.4.1 Experimental Settings

In Cmax and E&Cmax problems, we consider a robotic cell that has two machines

located between input and output buffers as shown in Figure 4.1. Each part is first

taken from the input buffer, then processed on one of the machines, and then deliv-

ered to the output buffer. The processing time of a part may be different on different

machines. The speed of the robot is controllable and has a lower and an upper bound.

In addition, we have the constants cf − ce and k which define the energy consump-

tion function. In Table 4.3, we give the experimental settings used to generate the

instances.

Table 4.3: Experimental Settings

Number of Parts 10, 30, 50

Distance Scenarios: Short, Long, Mixed

Processing Times: Equal LV, Equal HV, P1 < P2 - LV, P1 < P2 - HV

cf − ce: 2-2, 2.5-2

vmax: 1.5, 2.0

k: 2.0, 1.5

We generate instances for the number of parts 10, 30, and 50. We created mathe-

matical models and heuristic algorithms to solve Cmax and E&Cmax problems. When

the number of parts increases, the mathematical model cannot be solved in reasonable

CPU times. For this reason, we compare the performance of heuristic algorithms with

the mathematical models on the instances with 10 parts . We run algorithms to solve

the instances with 30 and 50 parts.

In the cell, there are four locations (machines/buffers) that the robot travels between

and hence the robot travels on six line segments two of them are between the input

buffer and machines, two of them are the output buffer and machines, one of them

is between machines, and one of them is between buffers. Three distance scenarios

are generated. In scenario Short, the distance between machines is 5 m., the distance

between buffers is 15 m., other distances are 10 m. In scenario Long, all distances in
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scenario Short are multiplied by two. In scenario Mixed, the distance between buffers

is 15 m and other distances are 10 m.

We assume that the parts processed are non-identical so their processing times are

different from each other. Also a part’s processing time can be different on different

machines. We consider four scenarios for the processing times of the parts. In the first

two scenarios (Equal LV and Equal HV), the processing time of a part on machine

1 is equal to the processing time of that part on machine 2. In Equal HV scenario,

processing times are generated from a larger interval compared to Equal LV scenario.

In the last two scenarios, we assume that the processing time of a part on machine

2 is longer than the processing time of that part on machine 1. Processing times are

generated for scenario Equal LV using uniform distribution between 80 seconds and

100 seconds (U(80; 100)). In scenario Equal HV, processing times are generated

using uniform distribution between 40 seconds and 140 seconds (U(40; 140)). In sce-

nario P2 > P1 - LV (P2 > P1 - HV), processing times are generated using uniform

distribution between 80 seconds and 100 seconds (20 seconds and 100 seconds) for

machine 1, between 100 seconds and 120 seconds (100 seconds and 180 seconds) for

machine 2.

The parameters related to the energy consumption function are cf − ce, vmax, and

k. We consider two parameter settings for cf − ce. In the first setting, we assume

the energy consumption of the robot is the same for robot status of full and empty

(cf = ce = 2). In the second setting, the energy consumption is higher when the

robot is full (cf = 2.5, ce = 2, cf > ce). We assume the minimum speed of the robot

is 0.5 m/s. We consider two scenarios for maximum speeds which are 1.5 m/s (low)

and 2 m/s (high). We use two values for the exponent k which are 2 and 1.5. In

all instances, we assume the time of loading/unloading operations (ε) is equal to one

second.

We have a base parameter setting with scenario Short, Equal LV, cf = ce = 2, vmax =

1.5, k = 2. At each time, we change a parameter value while the others are the

same as in the base setting. So, we generate 9 parameter settings in total. For each

parameter setting, we randomly generate five problem instances. For each problem

instance, we will find efficient solutions for ten different levels of Cmax.
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We use IBM ILOG CPLEX 12.10 as the solver to solve mathematical models. We

perform the test with a Java compiler on Intel Xeon(R) E-2246G (3.6 GHz and 16 GB

RAM). The time limit of the solver is set to 5000 seconds. We get the best solution

and gap from the solver if it does not reach optimality in the time limit. In addition,

algorithms GNS, SA-I, and SA-II are used to solve Cmax problem, GNSE , SA-IE ,

and SA-IIE are used to solve E&Cmax problem.

SA-I, SA-II, SA-IE , and SA-IIE are simulated annealing based algorithms. They have

parameters that are initial temperature (t0), cooling schedule (α), number of iterations

(NumIteration). We set t0 = 1000, α = 0.99 and NumIteration = 2000. In

addition, we call SOA in heuristic algorithms to determine robot speeds in the moves.

In this algorithm, we have parameter ∆ that is related to the increment of the time of

moves. We set the value of ∆ as two seconds.

First, we solve Cmax problem to determine the minimum makespan. Then, giving a

makespan upper bound (
∑

t∈T ct), we solve E&Cmax problem. We solve the instances

for ten different makespan upper bounds, named C̄j
max where 1 ≤ j ≤ 10. C̄1

max is

the minimum makespan value found by the algorithms in Cmax problem. We found

C̄10
max by adjusting the robot speed as the minimum speed (vmin) in all moves by using

route 3 (or route 4) for all parts in the schedule. Other makespan levels (C̄2
max-C̄9

max)

are equally separated between C̄1
max and C̄10

max.

We solve E&Cmax problem for makespan upper bounds in ascending order (C̄1
max,

C̄2
max,...,C̄10

max). For makespan upper bound C̄1
max, GNSE (SA-IE , SA-IIE) takes the

output solution of GNS (SA-I, SA-II) as the initial solution. For makespan upper

bound C̄j
max, GNSE (SA-IE , SA-IIE) takes the output solution of GNSE (SA-IE , SA-

IIE) solved for makespan upper bound C̄j−1
max as the initial solution where 2 ≤ j ≤ 10.

4.4.2 Results for the Cmax Problem

We first compare IBM CPLEX with the heuristic algorithms for the instances with 10

parts. Then, for 30 and 50 parts, we use heuristic algorithms to solve Cmax problem.

We compare heuristic algorithms with each other.

In Table 4.4, we summarize the results for the instances with 10 parts. For all in-
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stances, IBM CPLEX finds optimal solutions. GNS finds optimal solutions in 96% of

the instances. SA-I and SA-II find optimal solutions in 87% and 89% of the instances.

For all heuristics, the average optimality gap is less than 0.1%. While IBM CPLEX

spends 123.5 seconds to find the optimal solution, heuristic algorithms terminate in

1.3 seconds or less on average.

Table 4.4: Results of the instances with 10 parts for Cmax Problem

IBM CPLEX GNS SA-I SA-II

Optimal 100% 96% 87% 89%

Avg. Gap 0.000% 0.019% 0.075% 0.036%

Avg. Comp. Time (sec) 123.5 0.3 0.3 1.3

For the instances with 30 and 50 parts, we run heuristic algorithms. In Table 4.5, we

summarize the results. We give % of times an algorithm finds the best solution (Best)

among the three alternative algorithms, the average gap from the best objective value

achieved (Avg. Deviation) and average CPU times (Avg. Comp. Time) required to

converge to a solution. CPU times increase as the number of parts increases. In over-

all, SA-II requires shortest CPU time. SA-I performs better in finding best solutions

overall. However, Avg. Deviation levels show that all three heuristics find very close

Cmax values.

In the next section, we will give the results on E&Cmax problem.

4.4.3 Energy Consumption vs Makespan

In this section, we first present a set of efficient solutions for a selected problem in-

stance with the base parameter setting and with 10 parts. Figure 4.6 gives the efficient

points which represent the behavior of the efficient frontier. The amount of energy

consumed by the robot falls as the makespan level increases. The robot intends to

move slower to decrease energy consumption if we have more time for completing

the parts. The robot intends to move faster to achieve a shorter makespan. This in-

creases energy consumption. Due to the convex energy consumption function, energy
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Table 4.5: Results of the instances with 30 and 50 parts for Cmax Problem

Number of Parts

30 50 Overall

GNS

Best 64.4% 53.3% 58.9%

Avg. Deviation 0.05% 0.07% 0.06%

Avg. Comp. Time (sec) 5.8 57.8 31.8

SA-I

Best 62.2% 62.2% 62.2%

Avg. Deviation 0.06% 0.05% 0.06%

Avg. Comp. Time (sec) 6.3 59.8 33.1

SA-II

Best 51.1% 31.1% 41.1%

Avg. Deviation 0.12% 0.23% 0.17%

Avg. Comp. Time (sec) 5.1 29.7 17.4

consumption increases sharply as the makespan decreases.

The trade-off between energy consumption and cycle time can be used to save en-

ergy. When a high rate of output is needed, for example, the cell would work in

lower makespan times, although it would consume more power. However, when we

have a flexible due date for the completion of parts, energy consumption could be

more important. Then, the robotic cell can work at higher makespans and reduces

energy consumption. Therefore, energy saving can be achieved according to the time

available at hand.

4.4.4 Results of E&Cmax Problem

In this section, we first compare the performance of the mathematical model and the

algorithms for the instances with 10 parts. Then, for 30 and 50 parts, we present the

effects of the parameters on the performance of the algorithms.
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Figure 4.6: A set of efficient solutions
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4.4.4.1 Comparison of Heuristic Algorithms with the Mathematical Model

We solve the mathematical model for the instances with 10 parts and the results are

given in Table 4.6. For ten different values of makespan upper bounds (C̄1
max −

C̄10
max), we give the percentage of instances for which IBM CPLEX achieved less

than 1% optimality gap, percentage of instances with an optimality gap between 1%

and 5%, and the percentage of instances no solution is found within the given time

limit. We also give average CPU times. Except when we look for a solution at

minimum makespan upper bound (C̄1
max), in almost all cases IBM CPLEX could find

a feasible solution for the problem within the given time limit. At C̄1
max, which is

the minimum Cmax case, finding a feasible solution itself becomes a difficult problem

and the performance of IBM CPLEX deteriorates. We observe that asCmax increases,

the solution quality achieved by IBM CPLEX gets better. In general, in more than

70% of the cases IBM CPLEX could find a solution within 5% optimality gap.

IBM CPLEX found optimal solution in 56.9% of the instances with 10 parts. For

these instances, the average CPU time of IBM CPLEX is 3163.2 seconds. In Table

4.7, we give a comparison of the performances of the heuristic algorithms with the

optimal solutions found by IBM CPLEX. We can conclude that heuristic algorithms
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converge to a solution within few seconds and they find energy consumption values

within 1% of the optimal solution. Among the algorithms, SA-IIE is better to find

optimal solutions and it has the minimum average gap.

Table 4.7: Comparison of heuristic algorithms with optimal solutions

GNSE SA-IE SA-IIE

Optimal 64.45% 66.80% 71.09%

Avg. Gap 1.09% 1.03% 0.98%

Avg. Comp. Time (sec) 3.0 3.9 5.2

4.4.4.2 Effects of problem parameters on the performance of heuristic algo-

rithms

We run heuristic algorithms on the instances with 30 and 50 parts. The effect of

parameters on the performances of the algorithms is analyzed. For each algorithm,

we give the percentage of instances the best solution is found (Best), average deviation

from the best solution found (Avg. Deviation), and average computation time.

Table 4.8 compares the performance of heuristic algorithms for different distance

scenarios. In all distance scenarios, SA-IIE performs better in terms of finding best

solution and deviation from the best solution. When all distances are long (scenario

Long), deviation from the best solution found is lower for all algorithms. However,

deviation from the best solution found is higher and algorithms’ percentages of best

solutions found are close to each other in scenario Mixed. Also, there is an increase

in computational times in scenario Mixed. We should also note that, Avg. Deviation

values are less than 0.3% for all algorithms and all scenarios. This means that the

energy consumption levels achieved by the algorithms are close to each other.

Table 4.9 summarizes the effects of processing time scenarios on the performance

of heuristic algorithms. SA-IIE outperforms the other algorithms in finding the best

solution for the problem. The maximum Avg. Deviation is 0.53%, so the algorithms

achieve close energy consumption levels. We observe that deviation from best solu-
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Table 4.8: Effects of Distance Scenarios

Distance Scenarios GNSE SA-IE SA-IIE

Short

Best 60.0% 70.0% 82.7%

Avg. Deviation 0.21% 0.12% 0.08%

Avg. Comp. Time (sec) 251.9 247.9 238.6

Long

Best 52.7% 75.3% 84.7%

Avg. Deviation 0.06% 0.01% 0.00%

Avg. Comp. Time (sec) 296.7 266.6 265.6

Mixed

Best 63.3% 68.0% 73.3%

Avg. Deviation 0.27% 0.18% 0.16%

Avg. Comp. Time (sec) 340.7 282.5 301.4

tions increases when the variance between the processing times is high and processing

times of the parts on machines are different. With high variance processing times, the

computational times and deviations significantly increase for all algorithms. In addi-

tion, different processing times on machines raise computational times and deviation

from the best solutions found.

Table 4.10 gives results for different levels of parameters related to robot specifica-

tions, i.e. cf − ce , vmax and k. Similar to previous analysis, SA-IIE performs better

than the other algorithms for all scenarios.

All algorithms converged to a solution in 500 CPU seconds at most. They find solu-

tions which have close energy consumption levels, but SA-IIE finds the best solution

in more cases than the others. SA-IIE finds the best solution in 70% of the cases in

the worst case.
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Table 4.9: Effects of Processing Times

Processing Time GNSE SA-IE SA-IIE

Equal - LV

Best 60.0% 70.0% 82.7%

Avg. Deviation 0.21% 0.12% 0.08%

Avg. Comp. Time (sec) 251.9 247.9 238.6

Equal - HV

Best 48.0% 67.3% 70.7%

Avg. Deviation 0.52% 0.27% 0.18%

Avg. Comp. Time (sec) 493.5 321.7 379.6

P1 < P2 - LV

Best 57.3% 66.7% 75.3%

Avg. Deviation 0.30% 0.24% 0.25%

Avg. Comp. Time (sec) 357.0 324.4 303.1

P1 < P2 - HV

Best 54.0% 72.7% 72.7%

Avg. Deviation 0.53% 0.31% 0.35%

Avg. Comp. Time (sec) 267.2 234.7 277.4
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Table 4.10: Effects of Robot Parameters

Robot Parameters GNSE SA-IE SA-IIE

Base

Best 60.0% 70.0% 82.7%

Avg. Deviation 0.21% 0.12% 0.08%

Avg. Comp. Time (sec) 251.9 247.9 238.6

cf > ce

Best 64.7% 75.3% 81.3%

Avg. Deviation 0.17% 0.09% 0.06%

Avg. Comp. Time (sec) 266.6 269.8 229.5

high vmax

Best 60.0% 66.7% 76.7%

Avg. Deviation 0.34% 0.18% 0.18%

Avg. Comp. Time (sec) 276.2 277.6 200.2

k = 1.5

Best 30.0% 48.0% 76.0%

Avg. Deviation 0.17% 0.09% 0.07%

Avg. Comp. Time (sec) 264.4 251.3 286.8
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4.4.5 The Benefit of Robot Speed Control

In general, robots are operated at the highest speed in practice to obtain the maximum

throughput at the lowest makespan. By controlling the speeds of the robot, we can

reduce energy consumption whıle achieving a target makespan. We analyze how

much energy saving is possible by the robot speed control in this section.

As discussed the performance of SA-IIE is the best among the three heuristic algo-

rithms, therefore we use the solutions of SA-IIE to calculate energy saving. SA-IIE

uses the solution of SA-II as input to solve E&Cmax problem. Using SA-II, we first

find the minimum makespan assuming the robot moves at its maximum speed in all

moves. Then, for the minimum makespan found by SA-II, SA-IIE finds a solution

with minimum energy consumption. We calculate the energy saving rate by dividing

the difference between the energy consumption of the solution SA-II and energy con-

sumption found in SA-IIE by the energy consumption of the solution SA-II. In Table

4.11, we give the average energy saving rates in percentage with respect to different

parameter settings. We have 10.0% energy saving overall.

We see the energy saving rate falls when all distances are long. However, we can

save more energy in scenario Mixed. Note that the distance between machines in

scenario Mixed is longer than in scenario Short. So, this implies the distance between

machines is important in energy saving.

The high variance between the processing times of the parts causes less energy saving

as can be concluded from Table 4.11. When the processing time on a machine is

longer than the processing time on the other machine (P1 < P2 - LV, P1 < P2 - HV),

higher energy saving is possible.

If the robot consumes more energy when carrying a part i.e., an increase in the value

of cf , we have less energy saving rate. The maximum speed of the robot has also an

effect on the energy saving rate. With high maximum speed, we can reduce energy

consumption by controlling the robot’s speeds. Changing the value of k from 2 to 1.5

brings a reduction in energy saving. So, we can conclude that with higher k, we can

achieve more energy saving where k > 1.
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Table 4.11: Energy Saving Rates

Average Energy Saving (%)

Distance Scenario

Short 10.4

Long 4.5

Mixed 16.3

Processing Times

Equal - LV 10.4

Equal - HV 7.6

P1 < P2 - LV 13.2

P1 < P2 - HV 9.2

Robot Parameters

Base 10.4

cf > ce 9.5

high vmax 10.9

k = 1.5 8.8

Overall 10.0
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In this section, we generated instances with different numbers of parts, distance sce-

narios, processing times, and robot parameters for Cmax and E&Cmax problems. We

constructed two mathematical models and three heuristic algorithms as solution ap-

proaches. We use IBM CPLEX to solve mathematical models. Because of the com-

plexities of the problems, IBM CPLEX can solve the instances with 10 parts. We use

the optimal solutions from IBM CPLEX to show the performances of the algorithms.

We showed the effects of distance scenarios, processing times, and robot parameters

on the performance of the algorithms. We gave a set of efficient solutions for E&Cmax

problem. At the end, we showed the benefit of robot speed control by giving energy

savings.
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CHAPTER 5

CONCLUSIONS

In this thesis, we studied two robotic cell scheduling problems with robot energy

consumption considerations. We consider cells with two machines, an input buffer

and an output buffer. Machines process the parts and the robot performs material

handling activities such as loading-unloading operations, moving parts between ma-

chines/buffers. We consider two different scheduling environments, a flow-shop man-

ufacturing environment and a parallel machine environment, separately.

For the flow-shop robotic cell, we find a cyclic schedule for a minimum part set

assuming that robot speed can be controlled. There are two possible robot cycles S1

and S2, which are certain move sequences that the robot follows. The problem is to

find a part sequence, choose a robotic cycle for each position and robot speeds so that

the two conflicting objectives cycle time and energy consumption are both minimized.

For that, a mathematical model is developed and we apply ε-constraint approach to

find efficient solutions.

We conduct experimental analysis by generating instances with different parameter

settings. We present a set of efficient solutions to see the relation of energy consump-

tion with the cycle time. We observe the energy consumption is decreasing when

cycle time increases. Then, we test the performance of the robot under different lev-

els of experimental factors, i.e. distances, processing times, the maximum speed of

the robot, and coefficients affecting the energy consumption. We find the possible

minimum cycle time using the algorithm proposed by Aneja and Kamoun (1999) as-

suming the robot speed is at the maximum level in all moves. Then, we give the model

that minimum cycle time as upper bound to find the minimum energy. We show the

energy saving comparing these two solutions. The effects of factors on energy saving
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rates are also presented.

For the parallel machine robotic cell, we consider a set of parts to be completed on

the given machines. The problem is to find the part sequence, choose a machine

for each part, find a robot activity sequence and robot speed at each move so that

the makespan and energy consumption objectives are minimized. We first showed

that a robot schedule can be represented by a sequence of robot routes. Each route

includes a set of robot activities. Defining the robot routes enabled us to develop

a mathematical model for the scheduling problem. We presented two mathematical

models. The first one minimizes the makespan when robot speed values are given and

fixed. The second model, achieved by using ε-constraint method, finds an efficient

solution by minimizing energy consumption for a given level of makespan. We have

also developed neighborhood search algorithms for both the makespan and energy

objectives for a given makespan level. For each case, we have three algorithms. One

of them uses greedy logic to converge to a local optimal solution. The other two

algorithms are based on Simulated Annealing metaheuristic.

Using different parameter settings, we generate instances to perform mathematical

models and algorithms. For the makespan minimization problem, we compare the

results of the mathematical model with the algorithms using small instances. Then,

we compare the algorithms with each other for large instances. We present a set of

efficient solutions with respect to makespan upper bounds using the results of the

makespan and energy minimization problem. We show that as the cycle time in-

creases, the energy consumption decreases. Then, for the makespan and energy min-

imization problem, we compare the results of the mathematical model with the algo-

rithms using small instances. Using large instances, we compare the algorithms with

each other under different parameter settings. We show the effect of parameters on the

performance of algorithms. The energy saving rates are presented using the energy

consumption of the solution from the makespan minimization problem and energy

consumption of the solution of makespan and energy minimization problem where

makespan upper bound is the minimum makespan found in makespan minimization

problem. In addition, the effects of parameters on energy saving are analyzed.

Energy efficient robotic scheduling becomes more important with the widespread use
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of robotic cells. With this study, we show that significant energy saving could be

achieved by carefully scheduling parts and robot activities/speeds. In future research,

other and maybe more realistic energy consumption functions can be considered such

as the ones which model acceleration/deceleration of the robot. Besides, when the

robot is not working, i.e., waiting in front of a machine, standby energy consumption

can be taken into account for a more realistic energy consumption calculation.

In this thesis, we consider flow-shop and parallel machine manufacturing environ-

ments consisting of only two machines. Robotic cell scheduling environments that

have more than two machines can be considered as another possible research direc-

tion. In addition, the objectives are minimization of energy consumption and the

completion time of the last part. Different scheduling objectives like completion time

or tardiness can be considered with the minimization of energy consumption.
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